Андрей Сахаров. Наука и свобода - Геннадий Горелик
Шрифт:
Интервал:
Закладка:
Рассказ о жизни Андрея Сахарова стоит начать с событий, происшедших за десять лет до его рождения.
В центре этих событий оказался Петр Лебедев (1866—1912) — первый российский физик мирового уровня. Получив европейское образование и признание в международном сообществе физиков, он вместе с тем был российским интеллигентом. Это он доказал своей жизнью и, можно сказать, смертью. Когда российская история поставила его перед выбором: наука или нравственный долг, он пожертвовал любимой профессией‚ и жертва оказалась непосильной при его болезни сердца.
Полвека спустя российская история поставила подобный выбор перед Сахаровым. Но и без этого у него были причины ощущать свою связь с физиком Лебедевым.
Первый учитель Сахарова в физике — его собственный отец — учился у Лебедева в Московском университете. Научный дом, в котором Сахаров начал свой путь в науке, — физический институт Академии наук не зря носил имя П.Н. Лебедева. Само здание института строилось для него, вынужденного в 1911 году покинуть университет. Лебедев оказался причастен даже к сахаровской военной физике. Главный научный результат Лебедева стал, можно сказать, элементом конструкции в термоядерной бомбе. Самая большая из сил природы, разбуженных человеком, находится в родстве с неуловимо маленькой силой, которую Лебедеву все-таки удалось уловить.
Свет оказывает давлениеЛебедев впервые обнаружил давление света в эксперименте и измерил его. Опыт был необычайно трудный.
В этом, правда, может усомниться тот, кто видел забавную научную игрушку, похожую на лебедевский прибор. Маленький пропеллер, накрытый стеклянным колпаком, начинает безостановочно вращаться, как только включается стоящая рядом обычная настольная лампа. Когда подобная вертушка крутится под действием ветра, это вряд ли кого удивит, но тут — стеклянный колпак, который не пропускает никакого дуновения воздуха. Пройти может только свет. Значит, он давит на лопасти не хуже воздушного потока? Игрушка, конечно, интересная, но неужели с такими вот штуками попадают в историю науки?
Интереснее, однако, сама история науки. Когда английский физик Крукс — нечаянно, для других целей — сделал первую световую вертушку, Лебедеву было всего семь лет. И без его помощи физики успели понять, что причина вращения вертушки, действительно, свет, но… не его давление. Попав под солнечные лучи, легко ощутить тепло, но никакого давления не почувствуешь. Именно это ощутимое тепло и вращает вертушку, нагревая воздух около вертушки под колпаком. Теоретики подсчитали, что эти слабенькие «тепло-воздушные» силы в тысячи раз больше предсказанных сил светового давления.
Так предсказывала электромагнитная теория света, придуманная великим Максвеллом (1831—1879) за год до рождения Лебедева, — очень необычная по тем временам теория.
Вещество, электричество и свет столь очевидно различались, что долгое время физики исследовали их порознь. Об их взаимосвязи догадывался Фарадей, а Максвелл воплотил догадку в точную теорию. Некоторые выводы этой теории, однако, оказались столь странными, что мало кто им поверил. Никто, впрочем, не обязан верить теории, пока эксперимент не проверит ее предсказание.
Из своих формул Максвелл получил, что электромагнитные сигналы могут путешествовать без проводов и что их скорость равна скорости света; отсюда он предположил, что и сам свет — это электромагнитные колебания. Согласно тем же формулам, поток света должен не только нагревать освещаемую поверхность, но и давить на нее. Максвелл вычислил это давление и понял, что оно должно быть очень мало, — просто потому что скорость света с необычайно велика, гораздо больше всех измеренных скоростей.
Вычисления великого Максвелла можно принять и на веру. Но можно и убедиться в его правоте — с помощью единственной формулы, допустимой в обществе нефизиков:
E = mc2.
С этой знаменитой формулой знакомы даже те, кто не знает, что обозначают входящие в нее буквы, не знает, что E — это энергия, m — масса, а c — скорость света.
А человек, бросавший когда-нибудь мяч, без всяких формул знает; чем больше масса мяча и скорость, тем сильнее ударит — надавит — мяч на того, в кого попадет. Иначе говоря,
давление p = масса · скорость
(читатель, знакомый с физикой, легко уточнит это равенство словами «на единицу площади за единицу времени»).
Учитывая это, слегка перепишем знаменитую формулу:
E = mc2 = mc·c = pc.
Ну а если E = pc, то, значит,
p = E/c.
И значит, чтобы подсчитать световое давление p, надо энергию света разделить на скорость света — огромную величину, около 300 000 км в секунду. Поскольку делить надо на огромное число, то давление света получается очень маленьким. В этом был корень всех трудностей экспериментаторов вплоть до Лебедева.
А трудности теоретиков состояли в том, что новые идеи не укладывались в рамки тогдашних научных представлений. Британская идея электромагнитного поля, или распределенной по пространству силы, была чужой для континентальной — прежде всего германской физики, в которой были только электрические частицы и силы между ними. В течение нескольких десятилетий царила Растерянность: не было оснований отвергнуть идеи Фарадея—Максвелла и не хватало духу поверить в них.
В физике имеется надежный путь к вере — эксперимент. Первую поддержку теория Максвелла получила в опытах немецкого физика Генриха Герца (1857—1894). Сначала Герц скептически смотрел на британскую теорию, но в 1888 году он сумел материализовать максвелловские формулы: в результате он убедился сам и убедил других, что электромагнитные колебания могут путешествовать без проводов и действительно со скоростью света.
Что касается светового давления, предсказания Максвелла оставались под вопросом. Не верил даже его соотечественник, лорд Кельвин (1824—1907), хотя он получил дворянство за научные заслуги в области электричества (за участие в проекте трансатлантического телеграфного кабеля).
Обнаружить световое давление могла бы вертушка Крукса, если ее как следует усовершенствовать. Прежде всего физики старались удалить воздух из-под колпака — улучшить условия для своих измерений. К тому времени когда Лебедев познакомился с проблемой, его опытные коллеги научились откачивать воздух из сосуда, оставляя там лишь одну стотысячную часть. Однако и этого остатка было слишком много — воздушные веяния все еще во много раз превышали силу светового давления.
И вот за дело, начатое англичанами, взялся русский, получивший отличное германское образование в весьма французском Страсбурге. Тогда, на рубеже XX века, в своей московской лаборатории тридцатилетний Лебедев был в расцвете сил, и они все ему понадобились: приобретенный опыт, увлеченность и упорство молодого исследователя, не лишенного здорового честолюбия.
(adsbygoogle = window.adsbygoogle || []).push({});