Теплотехника - Наталья Бурханова
Шрифт:
Интервал:
Закладка:
Суммируя приходные и расходные статьи баланса, приравнивая эти суммы, получаем уравнение теплового баланса, одинаково справедливого для любого класса и вида печей, причем, естественно, не все статьи в каждом конкретном балансе могут иметь место:
QXT + Qээ + QФT± QТЕХН + QФB + QФМ = QФП + Qyx + Qпот
В правой части уравнения представлено полезно использованное тепло qм, в левой – его выражение через теплотехнические величины, сравнительно легко измеряемые в практических условиях.
Отношение полезно использованного тепла к приходу тепла с топливом и воздухом называется коэффициентом полезного теплоиспользования:
ηКПТ =QM /(QXT + QФT + QФB).
Эта величина аналогична коэффициенту полезного действия – понятию, используемому при оценке работы машин и механизмов. Коэффициент полезного тепло-использования характеризует эффективность тепловой работы печи и позволяет сравнивать совершенство энергетики различных печей. Допустим, что водяные числа W (водяное число W равняется произведению теплоемкости на массовый расход) продуктов сгорания и исходных веществ (топливо и воздух) горения равны, тогда подставив qyx в уравнение теплового баланса и разделив на W, получим:
где ηкит. – коофициент полезного использования топлива;
или
где Ттеор иТфтеор – теоретическая температура горения топлива без учета и с учетом физического тепла топлива и воздуха горения; Тагрух – температура уходящих газов из агрегата.
Поскольку Тагр.ух и Ов.пот относительно малы, постольку теоретическая температура горения при подогреве воздуха за счет тепла отходящих газов зависит (при данной теоретической температуре горения топлива при холодном воздухе) от коофициента использования тепла, в рабочем пространстве печи:
12. Термодинамические принципы анализа и конструирования печей
Анализ работы печей с точки зрения термодинамики дает возможность установить некоторые общие положения, характеризующие итоговые результаты работы печей.
Применение первого и второго законов термодинамики позволяет оценить энергетические итоги только завершенного процесса переноса тепла или заданных элементов такого процесса и вместе с тем не позволяет определить производительность тепловых устройств и, в частности, печей.
Энергетическая оценка позволяет судить о полноте использования энергии в данном тепловом устройстве и ничего не говорит о работоспособности переданной энергии. Напротив, эксергетическая оценка позволяет судить о безвозвратныхпотеряхэнергиии, о качественной характеристике переданной энергии и не позволяет судить о полноте использования энергии в данном устройстве.
При одном и том же расходе энергии процесс переноса тепла в принципе тем более эффективен, чем выше температура среды, воспринимающей тепло, так как при этом обесценивание энергии меньше. При одинаковой эксер-гии греющей среды использование энергии в тепловом устройстве ухудшается по мере увеличения необходимой по технологическим соображениям температуры поверхности нагрева. Чем выше необходимая температура поверхности нагрева, тем выше должна быть эксергия греющей среды и тем выше требования к качеству топлива и условиям его сжигания. Напротив, при низкой температуре поверхности нагрева или нагреваемой среды применение греющей среды с высокой эк-сергией нецелесообразно, так как все равно происходит процесс обесценивания энергии.
Печи рассчитывают и конструируют, стремясь обеспечить по возможности более высокий коэффициент использования энергии η kиэ.
Для получения максимального ηкит агригата ηкитт рабочего пространства должен иметь некоторое оптимальное, но не максимальное значение.
Оценка топлив путем вычисления возможных значений ηкит. агрегата при различных условиях сжигания топлива является весьма важной для конструирования печей и установления рациональных режимов их работы.
13. Требования, предъявляемые к факелу мартеновских печей
Аэродинамические контуры – это геометрическое место точек, где скорости струи приближаются к нулю. Контуры горения определяют по величине химического недожога топлива, при этом продольная координата, соответствующая длине контура горения, представляет собой длину факела Lф.
Для облегчения математического описания процессов горения в факеле и их расчета целесообразно задаться какой-либо минимальной величиной недожога, которая бы характеризовала контур факела и его длину. Для того чтобы унифицировать этот размер, следует принять цифру 0,5% СО или соответствующее значение q3.Для высококалорийного топлива (такого как мазут, природный и коксовый газы) величине 0,5% СО в продуктах сгорания при a=1 соответствует потеря тепла qз =1,3-1,8%. Следовательно, для оценки длины факела этих топлив можно принимать величину равную примерно 2% (учитывая некоторое количество водорода в продуктах сгорания).
Длина факела. Как правило, для мартеновской печи нужен короткий факел. В период завалки его видимая часть должна заканчиваться примерно на середине рабочего пространства печи, а в период доводки желательно удлинять факел, чтобы он занимал 3/4 длины ванны. Но всегда необходимо, чтобы в последнем по ходу факела завалочном окне было чисто и не было никаких признаков догорания топлива.
Форма факела. В мартеновских печах форма факела имеет первостепенное значение. Необходимо, чтобы он был настильным – покрывал ванну, не касаясь повоз-можности передней и задней стенок, и был максимально удален от главного свода, т. е. по визуальным наблюдениям он должен быть тонким и без протуберанцев. Такой факел обычно называют настильным и жестким.
Вот почему для отопления мартеновских печей необходимы специальные форсунки. Угол наклона форсунки к зеркалу ванны следует выбирать таким, чтобы была обеспечена требуемая форма факела и не происходила чрезмерно большая его деформация.
О размерах факела и его форме часто судят по топографии разрушения кладки мартеновских печей (сводов и стен). Как правило, локальные разрушения происходят по контуру факела.
Скоростные характеристики. Разумеется, что для обеспечения настильности и жесткости факела его аэродинамические характеристики должны быть достаточно высокими, т. е. начальная скорость истечения струи из форсунки и скорости разлета факела вблизи ванны на всей ее длине должны быть достаточно большими, чтобы не произошли отрыв факела от ванны и подъем его к своду.
Скоростные характеристики определяют и длину факела, и его окислительную способность. Кроме того, они отражают степень непосредственно механического воздействия факела на ванну печи, что является необходимым для уменьшения пенообразования и улучшения кипения ванны.
14. Окислительная способность, радиационные характеристики факела
Окислительная способность. От организации факела в мартеновской печи в значительной степени зависит и протекание оченьважных для технологии процессов, в частности процесса окисления углерода. Процессы окисления примесей ванны в основном определяются процессами массообмена, как это показано в технической литературе.
Для интенсификации теплообмена в рабочем пространстве мартеновских печей (особенно крупнотоннажных, работающих на жидком чугуне) необходимо принимать все меры для ускорения реализации химической энергии примесей ванны и дожигания окиси углерода непосредственно у поверхности ванны. Этот процесс самоускоряется: создание условий для интенсивного выгорания обеспечивает кипение ванны, что в свою очередь способствует переносу в ванну тепла и кислорода из атмосферы печи. Поэтому всякое улучшение подачи нагретого в регенераторах воздуха к поверхности ванны создает условия для ускорения плавки. Интенсифицировать же массообмен можно созданием короткого и направленного факела и применением интенсификаторов. Нельзя забывать и о необходимости правильного распределения тепла и окислителя по поверхности ванны для того, чтобы ванна кипела равномерно и без вспенивания шлака. Это требование может быть удовлетворено при подборе факела соответствующей длины и при обеспечении его определенных радиационных характеристик, что, естественно, невозможно без средств управления факелом.
Радиационные характеристики. Факел мартеновской печи должен быть светящим, т. е. обладать максимально возможной степенью черноты (при достаточно высокой температуре). Этот не вызывающий сомнений в практических условиях принцип в теории время от времени, начиная с работ Е. К. Венст-рема, подвергается сомнению. Однако каждый раз результаты исследований и опыт работы печей опровергают подобные сомнения как, например, происходило в последнее время при переводе мартеновских печей на отопление природным газом и работе их на легких мазутах. Очевидно, что в совмещении двух последних требований, предъявляемых к факелу («короткий» ив то же время «светящийся»), есть известное противоречие, так как чем быстрее протекают процессы перемешивания топлива с воздухом и процессы горения, тем меньше создается возможностей для выделения углеродистых частиц, обеспечивающих светимость факела.