- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Атомная энергия для военных целей - Генри Смит
Шрифт:
Интервал:
Закладка:
1.25. Все высказанные нами утверждения основаны на экспериментальных данных. Теория ядерных сил пока не завершена, но на основе принципов квантовой механики она была развита настолько, чтобы с ее помощью можно было объяснить не только описанные выше наблюдения, но и более подробные эмпирические данные об искусственной радиоактивности и о различиях между ядрами с четными и нечетными массовыми числами.
ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ1.26. Выше мы упоминали об испускании позитронов или электронов ядрами, стремящимися к устойчивости. Испускание электронов (β-лучей) уже было известно из изучения естественных радиоактивных веществ, но испускания позитронов для таких веществ обнаружено не было. В действительности, общие рассуждения, изложенные выше, были основаны частично на данных, которые выходят за рамки настоящего отчета. Однако, мы дадим краткое описание открытия «искусственной» радиоактивности и того, что мы о ней знаем.
1.27. В 1934 г. Кюри и Жолио сообщили о том, что некоторые легкие элементы (бор, магний, алюминий), подвергнутые бомбардировке α-частицами, в течение известного времени продолжали испускать позитроны после того, как бомбардировка была прекращена. Другими словами, в результате бомбардировки α-частицами бор, магний и алюминий становились радиоактивными. Кюри и Жолио измерили периоды полураспада радиоактивных веществ, образовавшихся под действием α-частиц; они оказались равными 14 минутам, 2,5 минутам и 3,25 минутам соответственно.
1.28. Результаты, полученные Кюри и Жолио, послужили стимулом для проведения подобных опытов во всем мире. В частности, Э. Ферми пришел к выводу, что нейтроны, благодаря отсутствию у них заряда, должны, сравнительно легко проникать и внутрь тех ядер, которые имеют высокие атомные номера и в сильной степени отталкивают протоны и α-частицы. Свое предположение он смог почти сразу подтвердить, обнаружив, что ядро атома, подвергшегося бомбардировке, захватывало нейтрон и что таким образом получалось неустойчивое ядро, которое затем приходило в устойчивое состояние путем испускания электрона. Следовательно, конечное устойчивое ядро имело массовое число на единицу выше, а также атомный номер на единицу выше, чем первоначальное ядро-мишень.
1.29. В результате множества опытов, проведенных с 1934 г. мы можем теперь получать радиоактивные изотопы почти каждого элемента периодической таблицы. Некоторые из них возвращаются к устойчивому состоянию испусканием позитронов, некоторые испусканием электронов, некоторые при помощи процесса, известного под названием захвата K-электрона, которого мы рассматривать не будем, и небольшое число ядер (вероятно три) становятся снова устойчивыми благодаря испусканию α-частицы. Всего наблюдалось примерно пятьсот неустойчивых ядерных видов, и в большинстве случаев их атомные номера и массовые числа были установлены.
1.30. Искусственные радиоактивные элементы играют важную роль не только в осуществлении всего проекта, в котором мы заинтересованы, их будущее значение в медицине, в химии «меченых атомов» и во многих других областях научно-исследовательской работы вряд ли можно переоценить.
ЭНЕРГЕТИЧЕСКИЕ СООБРАЖЕНИЯ
ЭНЕРГИЯ ЯДЕРНЫХ СВЯЗЕЙ1.31. При описании радиоактивности и строения атома мы умышленно умолчали о количественных данных и не упомянули о приложениях принципа эквивалентности массы и энергии, который мы провозгласили руководящим принципом настоящего отчета. Теперь пришло время сказать не только об общих принципах, но и о количественных деталях.
1.32. Мы уже говорили об устойчивых и неустойчивых ядрах, состоящих из совокупности протонов и нейтронов, удерживаемых вместе ядерными силами. Для разрушения устойчивой системы необходимо произвести работу это общий физический принцип. Так, если группа нейтронов и протонов устойчива, на разделение составляющих ее частиц должна быть затрачена энергия. Если действительно энергия и масса эквивалентны, то общая масса устойчивого ядра должна быть меньше общей массы отдельных протонов и нейтронов, которые его составляют. Эта разность масс должна быть эквивалентна энергии, необходимой для полного разрушения ядра и называемой энергией связи. Вспомним, что массы всех ядер являются «приблизительно» целыми числами; небольшие отличия от целых чисел играют большую роль.
1.33. Возьмем, например, α-частицу; она устойчива. Так как ее массовое число четыре, а атомный номер два, то она состоит из двух протонов и двух нейтронов. Масса протона 1,00758, масса нейтрона 1,00893 (см. Приложение 2), так что общая масса отдельных компонент ядра гелия равна
21,00758 + 21,00893 = 4,03302,
тогда как масса самого ядра гелия 4,00280. Пренебрегая двумя последними знаками, мы получим числа 4,033 и 4,003 с разностью в 0,030 единицы массы. Эта разность и выражает «энергию связи» протонов и нейтронов в ядре гелия. Она кажется малой, но, обращаясь к уравнению Эйнштейна, Е = mc2, мы видим, что небольшое количество массы эквивалентно большому количеству энергии. Действительно, 0,030 единицы массы равны 4,510-5 эрг на ядро, или 2,71019 эрг на грамм-молекулу гелия. В единицах, более знакомых инженеру или химику, это означает, что для разрушения всех ядер атомов гелия в одном грамме гелия потребовалось бы затратить 1,621011 кал или 190 000 kWh энергии. Наоборот, если бы можно было свободные протоны и нейтроны сгруппировать в ядро гелия, эта энергия освободилась бы.
1.34. Очевидно, стоит изучать возможность получения энергии путем соединения протонов и нейтронов или превращения ядра одного вида в другое. Приступим теперь к обзору современных знаний об энергиях связи различных ядер.
МАССОВЫЕ СПЕКТРЫ И ЭНЕРГИИ СВЯЗИ1.35. Определение химического атомного веса дает средний атомный вес большого числа атомов данного элемента. Если элемент обладает не одним изотопом, то химический атомный вес непропорционален массе отдельных атомов. Масс-спектрограф, построенный Ф. В. Астоном и другими на основе более раннего прибора Дж. Дж. Томсона, измеряет массы отдельных изотопов. Именно этими измерениями было доказано существование изотопов и показано, что на шкале атомных весов массы всех видов атомов очень близки к целым числам. Эти целые числа, найденные экспериментально, являются массовыми числами, которые мы определили выше и которые представляют собою суммы количеств протонов и нейтронов; их открытие значительно содействовало укреплению мысли о том, что все ядра суть комбинации нейтронов и протонов.
1.36. Результаты, полученные с помощью усовершенствованного масс-спектрографа для нескольких случаев ядерных реакций, дают точные величины энергий связи для многих видов атомов во всем диапазоне атомных масс. Эта энергия связи, В, пропорциональна разности между истинной массой ядра, М, и суммой масс всех нейтронов и протонов в ядре. Мы имеем
где Mp и Mn соответственно, массы протона и нейтрона, Z количество протонов, N = А — Z количество нейтронов и М истинная масса ядра. Изучение энергии связи, приходящейся на одну частицу, В/А, представляет больший интерес, чем изучение самого В. Такое изучение показывает, что, если оставить в стороне вопрос о колебаниях в легких ядрах, энергия связи на частицу имеет тенденцию к быстрому возрастанию до плоского максимума в окрестности А = 60 (никель) и затем опять к постепенному уменьшению. Очевидно, ядра в средней части периодической таблицы (ядра с массовыми числами от 40 до 100) связаны сильнее всего. В ядерных реакциях, при которых частицы результирующего ядра связаны сильнее, чем частицы первоначального ядра, энергия будет выделяться. Говоря на языке термохимии. такие реакции будут экзотермическими. Таким образом, вообще, можно получить выигрыш энергии путем комбинации легких ядер для образования более тяжелых, или путем расщепления очень тяжелых ядер на два или три меньшие осколка. Кроме того, существует несколько особых случаев экзотермических распадов ядра; это относится к первым десяти или двенадцати элементам периодической таблицы, где энергия связи на частицу изменяется неравномерно от одного элемента к другому.
1.37. До сих пор мы, как будто, нагромождали одно предположение на другое. Сперва мы приняли, что масса и энергия эквивалентны; теперь мы предполагаем, что атомные ядра можно перегруппировать с последующим уменьшением их общей массы; при этом освобождается энергия, которая может быть использована. Сейчас уместно будет поговорить о некоторых экспериментах, убедивших физиков в справедливости этих положений.
ЭКСПЕРИМЕНТАЛЬНОЕ ДОКАЗАТЕЛЬСТВО ЭКВИВАЛЕНТНОСТИ ЭНЕРГИИ И МАССЫ1.38. Как мы уже сказали, работы Резерфорда в 1919 г. по искусственному расщеплению ядер были продолжены множеством аналогичных экспериментов. Постепенное усовершенствование высоковольтной техники позволило заменить естественные α-частицы искусственно получаемыми быстрыми ионами водорода или гелия. Дж. Д. Кокрофту и Э. Т. С. Уолтону в лаборатории Резерфорда первым удалось осуществить ядерные превращения подобными методами. В 1932 г. они бомбардировали мишень лития протонами с энергией в 700 kV и обнаружили, что в результате бомбардировки из мишени выбрасывались α-частицы. Ядерную реакцию, которая при этом имела место, можно записать символически следующим образом:

