- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер
Шрифт:
Интервал:
Закладка:
«априорная истинность» которых уже заключена в их смысловых значениях. (Первое утверждение означает лишь, что «если выполняется Р и Q, то выполняется и Р»; второе устанавливает равносильность утверждений «неверно, что не выполняется Р» и «Р выполняется»; а третье может быть проиллюстрировано эквивалентностью двух способов формулировки теоремы Ферма, данных выше.) Мы можем также включить основные аксиомы арифметики:
Aк.о. х, у[х + у = у + х],
Aк.о. х, у, z[(x + у) х z = (x х z) + (у х z)],
хотя некоторые предпочитают определять арифметические операции через более простые понятия и выводить вышеуказанные утверждения как теоремы. Правила вывода могут вводиться в виде (самоочевидных) процедур типа
«Из Р и Р => Q следует Q».
«Из Aк.о.x[R(x)] мы можем вывести любое утверждение, получающееся путем подстановки конкретного натурального числа x в R(x)».
Такие правила являются инструкциями, следуя которым, можно с помощью утверждений, чья истинность уже доказана, получать новые утверждения.
Теперь, отталкиваясь от системы аксиом и раз за разом применяя правила вывода, мы имеем возможность построить достаточно длинные цепочки новых утверждений. На любой стадии этого процесса мы можем использовать снова и снова любую из аксиом, а также обратиться к любому из уже выведенных нами производных утверждений. Каждое утверждение из корректно выстроенной цепочки называется теоремой (несмотря на то, что многие из них достаточно тривиальны и неинтересны с точки зрения математики). Если у нас есть некое утверждение Р, которое мы хотим доказать, то мы должны подобрать такую цепочку, выстроенную в согласии с действующими правилами вывода, которая заканчивается утверждением Р. Такая цепочка предоставит нам доказательство Р в рамках системы; а Р тогда будет являться, соответственно, теоремой.
Идея программы Гильберта состояла в том, чтобы найти применительно к любой отдельно взятой области математики набор аксиом и правил вывода, который был бы достаточно полным для всех возможных в данной области корректных математических рассуждений. Пусть такой областью будет арифметика (с добавленными кванторами Eк.с. и Aк.о., позволяющими формулировать утверждения, подобные последней теореме Ферма). То, что мы не рассматриваем более общую область математики, не умаляет нашу задачу: арифметика и сама по себе обладает общностью, достаточной для применения процедуры Геделя. Если мы допустим, что благодаря программе Гильберта мы действительно располагаем такой всеобъемлющей системой аксиом и правил вывода для арифметики, то мы тем самым обретаем и определенный критерий для выявления «корректности» математического доказательства любого утверждения в области арифметики. Возлагались надежды на то, что подобная система аксиом и правил может быть полной в смысле предоставляемой нам принципиальной возможности решать, истинно или ложно произвольное утверждение, сформулированное в рамках этой системы.
Гильберт рассчитывал, что для любой строки символов, представляющих математическое утверждение, скажем, Р, можно будет доказать либо Р, либо ~ Р, если Р истинно или ложно, соответственно. Здесь мы в обязательном порядке оговариваем, что строка должна быть синтаксически корректна, где «синтаксически корректна» по сути означает «грамматически корректна» — то есть удовлетворяет всем правилам записи, принятым в данном формализме, среди которых будет правильное попарное соответствие скобок и т. п. — так чтобы Р всегда имело четко определенное значение «ложь» или «истина». Если бы надежды Гильберта оправдались, то можно было бы вообще не задумываться о том, что означает то или иное утверждение! Р было бы просто-напросто синтаксически корректной строкой символов. Строке было бы приписано значение ИСТИНА, если бы Р являлось теоремой (другими словами, если бы Р было доказуемо в рамках системы); или же ЛОЖЬ, если бы теоремой было ~ Р. Чтобы такой подход имел смысл, мы должны дополнительно к условию полноты наложить еще и условие непротиворечивости, гарантирующее отсутствие такой строки символов Р, для которой как Р, так и ~ Р были бы теоремами. Ведь в противном случае Р могло бы быть одновременно и ИСТИНОЙ, и ЛОЖЬЮ!
Такой подход, согласно которому можно пренебрегать смысловыми значениями математических выражений и рассматривать их лишь как строки символов некоторой формальной математической системы, в математике получил название формализма. Некоторым нравится эта точка зрения, с которой математика превращается в своего рода «бессмысленную игру». Однако я сам не являюсь сторонником таких идей. Все-таки именно «смысл» — а не слепые алгоритмические вычисления — составляет сущность математики. К счастью, Гедель нанес формализму сокрушающий удар! Давайте посмотрим, как он это сделал.
Теорема Геделя
Часть доказательства, приведенного Геделем, содержало некий очень сложный и детализированный кусок. Однако нам не обязательно разбираться во всех его тонкостях. Основная идея, в то же время, была проста, красива и глубока. И ее мы сможем оценить по достоинству. В «сложной» части (которая, впрочем, содержит много остроумных рассуждений) подробно показано, каким образом частные правила вывода и использование различных аксиом формальной процедуры могут быть представлены в виде арифметических операций. (Хотя в сложной части становится понятной плодотворность этих действий!) Для этого представления нам необходимо будет найти какой-нибудь удобный способ нумерации утверждений при помощи натуральных чисел. Один из способов мог бы заключаться в том, чтобы использовать своего рода «алфавитный» порядок для строчек символов формальной системы, имеющих одинаковую длину, упорядочить заранее строчки по длине. (Таким образом, за выстроенными в алфавитном порядке строками из одного символа будут следовать строки длиной в два символа, также упорядоченные по алфавиту; за ними идут строки из трех символов и так далее.) Это называется лексикографическим порядком[72]. В действительности Гедель использовал более сложную систему нумерации, но различия в данном случае для нас несущественны. Нас же должны в особенности интересовать функции исчисления высказываний одной переменной, наподобие введенной выше G(ω). Пусть n-я (из пронумерованных выбранным способом строк символов) такая функция от аргумента ω обозначается
Pn(ω).
Мы можем допустить, чтобы наша нумерация по желанию была несколько «либеральна» в отношении синтаксически некорректных выражений. (Это позволит значительно упростить перевод системы на язык арифметических операций по сравнению со случаем, когда мы будем стараться исключить из рассмотрения синтаксически некорректные выражения.) Если Pn(ω) синтаксически корректно, то оно будет представлять из себя некоторое совершенно определенное арифметическое выражение, в котором фигурируют два натуральных числа п и ад. Каков будет конкретный вид этого выражения — зависит от особенностей системы нумерации, которую мы выбрали. Но эти детали рассматриваются в «сложной» части и сейчас нас не касаются. Пусть Пn будет n-м доказательством. (Опять же мы можем использовать «либеральную нумерацию», когда для некоторых значений n выражение Пn не является синтаксически корректным и, тем самым, не доказывает никакую теорему.)

