Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Физика » Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Читать онлайн Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 104
Перейти на страницу:

5.3.1. Характеристики потоков метеороидов. Сравним орбитальные элементы астероидов групп Атона — Аполлона — Амура и метеорных и болидных потоков (последние взяты из работы [Terentjeva, 1990]). Здесь, конечно, подразумеваются орбитальные элементы метеороидных роев, проявляющихся как метеорные и болидные потоки, но для краткости используем термин «орбитальные элементы метеорных (метеороидных) потоков, метеоров, болидов», хотя это и не вполне корректно. На рис. 5.14 (см. вклейку) в пространстве орбитальных элементов (a, e) треугольниками показаны болидные потоки, а кружками — астероиды. Сравнение орбитальных характеристик метеоров, болидов и астероидов, сближающихся с Землей, показывает, что границы между этими популяциями малых тел Солнечной системы условны. Отметим, что для сравнения были выбраны астероиды, кометы и потоки с наклонениями меньше 20° и большими полуосями, не превышающими 6 а.е. Сплошными линиями ограничена область орбит с перигелийными и афелийными расстояниями, равными 1 а.е. Орбиты, лежащие правее правой ветви (перигелийное расстояние q = 1 а.е.), являются внешними для Земли и с ее орбитой не пересекаются. Орбиты, расположенные левее левой ветви (афелийное расстояние Q = 1 а.е.), являются внутренними орбитами и тоже не пересекают орбиты Земли. Орбиты внутри области (Q > 1 а.е., q < 1 а.е.) обязательно пересекают орбиту Земли. Объекты на правой или на левой линии касаются орбиты Земли либо в своем перигелии, либо соответственно в афелии. Прерывистыми линиями обозначены такие же области пересечения с орбитами Марса (1,5 а.е.) и Юпитера (5,2 а.е.).

Метеоры, болиды и астероиды располагаются примерно в одной и той же области, что и позволяет говорить о том, что нельзя связывать метеорные потоки только с кометами. Эти потоки могут порождаться также и астероидами. Косвенным подтверждением этого вывода являются новые наблюдения комет и астероидов. Периодическая комета Швассмана — Вахмана 1 при переоткрытии в 1976 г. имела звездообразный вид и только позже у нее появилась кома. Открытый в 1977 г. Хирон зарегистрирован как астероид? 2060. Спустя 10 лет он вдруг начал проявлять аномальное увеличение блеска — явный признак кометной активности. Сейчас накоплено достаточно фактов, свидетельствующих о том, что Хирон является гигантской кометой диаметром около 200 км. Есть и другие примеры движения комет по астероидным орбитам и наоборот. Это, например, такие периодические кометы, как Неуймина 1, Аренда — Риго, и такие астероиды, как (944) Гидальго, (3552) Дон Кихот, а также астероид 1984 ВС. Кроме того, спектральные данные о болидах, полученные Европейской болидной сетью, показывают, что часть болидов (которая может, кстати, порождать метеориты) явно относится к астероидному типу и при этом является членом метеорного или болидного потока.

Значительная часть метеороидов сосредоточена в роях. Метеороидные (метеорные) рои имеют ограниченный срок существования. Так как метеорные частицы распределены по всей длине орбиты роя, то на разные частицы гравитационное воздействие планет оказывается различным, что приводит к постепенному расширению метеорного роя, его размыванию. Через несколько десятков тысяч лет метеорный рой почти полностью размывается, его частицы оказываются практически равномерно распределенными по значительной области Солнечной системы. Они пополняют популяцию спорадических метеороидов, т. е. метеороидов, не создающих метеорных потоков. Поскольку метеорные потоки существуют и, судя по некоторым данным, существуют на протяжении всей истории человечества, то естественно предположить, что они все время должны образовываться. Единого мнения о механизме их образования до сих пор не имеется. Однако общепризнаны следующие возможные механизмы их образования:

1) выброс вещества при дезинтеграции кометных ядер (сублимация, взрывные процессы, полное разрушение ядер);

2) одновременное образование комет и метеорных роев при дезинтеграции более крупных тел;

3) дробление астероидов при столкновениях. Дезинтеграция кометных ядер подтверждается все увеличивающимся количеством наблюдений за кометами. Обнаружены как распады ядер комет, так и сильные потоки пыли, истекающей вместе с газом, а также, например, практически на глазах возникающий метеорный поток Дракониды после зафиксированного выброса из кометы Джакобини — Циннера.

5.3.2. Наблюдение крупных тел в метеорных и болидных потоках прямыми методами с поверхности Земли. На сегодняшний день уже можно с уверенностью говорить о том, что крупные тела в метеорных потоках есть [Багров и др., 1994, Smirnov and Barabanov, 1997; Барабанов, Смирнов, 2005]. Поэтому метеорные потоки могут быть потенциальными источниками крупных тел, падение которых на Землю может вызвать катастрофические последствия. Ярчайшим примером является, возможно, Тунгусский метеорит.

По каждому из основных метеорных потоков имеется богатая наблюдательная информация, полученная из визуальных, фотографических, телевизионных и радиолокационных наблюдений. Имеющаяся информация о массах метеорных тел позволяет построить функцию распределения таких тел по массам. Функция распределения по массам тел в метеорных потоках представляет собой обратный степенной закон или, по-другому, распределение Парето. Проведенный анализ показал, что наибольшая вероятность обнаружить крупные тела (размером свыше 10 м) существует для следующих метеорных потоков: Daytime Arietids (дневные Ариетиды), Capricornids (Каприкорниды), Perseids (Персеиды), kappa Cygnids (каппа-Цигниды), Taurids (Тауриды, или, точнее, осенние Тауриды), Geminids (Геминиды). Дневные Ариетиды наблюдаются радиометодами в дневное время суток. Исходя из этого анализа, первые наблюдения были проведены в метеорных потоках Персеиды и Геминиды. В последующие годы были исследованы остальные указанные метеорные потоки.

Все эти потоки действуют на протяжении нескольких суток, а характерное время встречи с телом массой в 1 т составляет порядка 100 сут. За период активности всех перечисленных выше потоков мы можем и не наблюдать болида, порожденного телом массой свыше 1 т. В среднем можно оценить, что за год могут наблюдаться несколько болидов, порожденных телами массой более 1 т. Необходимо подчеркнуть, что эти оценки сделаны на основе распределения по массам в области масс, гораздо меньших 1 т, так что если этот закон распределения по массам не выполняется в области больших масс, то приведенные оценки, полученные экстраполяцией, не будут соответствовать действительности. На рис. 5.15 приведены функции распределения метеорных тел по массам для выделенных потоков.

Среди метеорных потоков наиболее изучен, по-видимому, так называемый комплекс Тауриды, который содержит тела всех размеров: субмиллиметровую пыль, объекты, наблюдающиеся как радарные, визуальные и фотографические метеоры, метеориты с индивидуальными массами до 105 г [Babadzhanov et al., 2008], болиды (с массами до 109 г). Некоторые исследования говорят в пользу того, что не только Тунгусский метеорит (массой порядка 1011 г), но и целый ряд астероидов (возможно, «погасших» комет) с массами, достигающими 1017 г, также принадлежат этому комплексу, хотя при этом возникает много вопросов о генетической связи астероидов и комет в этом комплексе.

В окрестности Земли время от времени появляются довольно крупные тела. Тела таких же размеров (порядка метров и декаметров), но принадлежащие метеорным потокам или потокообразующим комплексам, не удавалось систематически наблюдать оптическими методами. Это объясняется многими причинами, главные из которых — крайне малый блеск (17–19m) и огромные скорости движения относительно Земли (20–70 км/с).

С другой стороны, многолетние наблюдения метеорных и болидных потоков показывают, что в среднем около 28 % небольших метеоров принадлежат потокам, почти две трети всех радиометеоров можно отнести к малым метеорным потокам. Число более крупных тел, наблюдаемых как визуальные и фотографические метеоры и принадлежащих потокам, достигает 47–56 %, а для болидов это число оценивается в 68 %. Значит, можно предположить, что концентрация больших тел с размерами порядка метров и декаметров в потоках также довольно значительна.

Рис. 5.15. Распределение тел по массам в метеорных потоках [Барабанов, Смирнов, 2003]; N — количество тел массой m, пролетающих за 1 с через площадку 1 м2

Рис. 5.16. Снимок на ПЗС-камере пролета декаметрового объекта в метеорном потоке Каприкорниды (Симеизская обсерватория, 2008 г.)

Поэтому естественно начинать регулярный поиск малых тел на подлете к Земле в направлениях на радианты известных метеорных потоков в периоды их максимальной активности. Впервые эта идея была высказана в 1994 г. [Багров и др., 1994].

Метеороид, движущийся в метеорном потоке, вблизи радианта имеет малую видимую угловую скорость относительно звезд, поскольку двигается практически прямо на наблюдателя. Поэтому для наблюдений вблизи радианта метеорного потока необходимо реализовать максимальную проницающую способность используемой аппаратуры.

1 ... 34 35 36 37 38 39 40 41 42 ... 104
Перейти на страницу:
На этой странице вы можете бесплатно скачать Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов торрент бесплатно.
Комментарии
Открыть боковую панель