- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип
Шрифт:
Интервал:
Закладка:
Для звезд как с малой, так и с предельно большой плотностью, исследованных Чандрасекаром на борту парохода, решение соответствующего дифференциального уравнения и вытекающее из него строение звезды нашлось в книге Эддингтона. Однако для звезд с промежуточными значениями плотности вывести решение с помощью математических формул Чандрасекару никак не удавалось. Вычисления были слишком сложны. Ничего не оставалось, кроме как решить дифференциальные уравнения численно, с помощью счетной машины.
В 1934 г. счетные машины весьма отличались от тех компьютеров, которые появились в 90-е годы. Они напоминали, скорее, простейшие из карманных калькуляторов. За один раз они могли лишь перемножить два числа, причем пользователю требовалось сначала вручную ввести эти числа, а затем повернуть рукоятку. Рукоятка приводила в движение сложную систему шестеренок и колесиков, выполнявших умножение и выдававших ответ.
Но даже и такие калькуляторы были тогда роскошью, и получить к ним доступ было непросто. У Эддингтона, однако, был один — «Брауншвайгер», размер которого примерно соответствовал размеру настольных персональных компьютеров 90-х, и поэтому Чандрасекар, к тому времени уже хорошо знакомый с великим человеком, просто пришел к Эддингтону и попросил на время одолжить ему машину. В тот момент Эддингтон был вовлечен в спор о белых карликах с Милном и был весьма заинтересован поскорее узнать их детально рассчитанную внутреннюю структуру; поэтому он позволил Чандрасекару перенести «Брауншвайгер» в его комнату в Тринити-колледже,
Вычисления были длинными и утомительными. Каждый вечер после обеда Эддингтон, работавший в Тринити-колледже, поднимался к Чандрасекару, чтобы приободрить его и взглянуть, как продвигается дело.
Наконец, много дней спустя, Чандрасекар закончил. Он ответил на вызов Амбарцумяна. Для каждого из десяти типичных белых карликов он рассчитал внутреннюю структуру и затем, зная ее, — полную массу и поперечный размер звезды. Все массы, как и предполагалось, оказались меньше 1,4 солнечной. Более того, когда он нанес все значения масс и диаметров на диаграмму и соединил точки, получилась одна плавная кривая (правая часть рис. 4.3); измеренные массы и поперечники Сириуса В, а также других известных белых карликов относительно хорошо согласовывались с полученной кривой. (С учетом исправлений, полученных в результате современных астрономических наблюдений, согласие становится еще лучше; обратите внимание на новые значения 1990 г. массы и поперечника Сириуса В на рис. 4.3.) Гордый своими результатами, полагая, что астрономы всего мира, наконец, согласятся с его утверждением, что белые карлики не могут быть тяжелее, чем 1,4 массы Солнца, Чандрасекар был счастлив.
Особенно приятной казалась возможность представить полученные результаты на заседании Королевского астрономического общества в Лондоне. Выступление было назначено на пятницу 11 января. Согласно протоколу, детали повестки дня предстоящего заседания должны были оставаться в секрете вплоть до начала заседания, однако мисс Кей Вильямс, ученый секретарь Общества и близкий друг Чандрасекара, обычно тайно заранее посылала ему программу выступлений. Получив в четверг вечером программу по почте, Чандрасекар был удивлен, обнаружив, что сразу после его доклада следует выступление Эддингтона по вопросу о «релятивистском вырождении». Чандрасекар недоумевал. В течение последних нескольких месяцев Эддингтон заходил навестить его, по крайней мере, раз в неделю, читал черновики, но ни разу не упомянул о собственных исследованиях на ту же тему!
Подавив досаду, Чандрасекар спустился к обеду. Эддингтон был в столовой, обедая за главным столом. Приличия, однако, не позволяли просто так побеспокоить столь известного человека, даже если вы были с ним знакомы, и он проявлял некий интерес к вашей деятельности. Поэтому Чандрасекар, сдержавшись, просто сел в стороне.
Врезка 4.2
Объяснение масс и окружностей звезд — белых карликов
Для качественного понимания того, почему белые карлики имеют такие массы и окружности, которые показаны на рис. 4.3, посмотрите на иллюстрацию внизу. На ней показаны среднее давление и гравитация в белом карлике (отложены по вертикали) как функция окружности звезды (отложены вправо) или плотности (отложена влево). Если Вы сжимаете звезду, так что увеличивается ее плотность и уменьшается окружность (движение на рисунке влево), то давление звезды повышается в соответствии со сплошной кривой, быстрее для плотностей, где сопротивление сжатию равно 5/3, и медленнее для больших плотностей, когда сопротивление — 4/3. Это же самое сжатие звезды заставляет поверхность звезды приближаться к ее центру, таким образом, увеличивая силу внутренней гравитации звезды в соответствии с ходом штриховых линий. Скорость увеличения гравитации аналогична 4/3 у сопротивления: увеличение гравитации на 4/3 на каждый процент сжатия. На рисунке показаны несколько штриховых линий гравитации для нескольких значений массы, и чем больше масса звезды, тем сильнее ее гравитация.
В каждой звезде, например в звезде с массой в 1,2 солнечной, гравитация и давление должны уравновешивать друг друга. Поэтому звезда должна существовать на пересечении штриховой линии гравитации, отмеченной как «1,2 солнечной массы», и сплошной кривой давления: это пересечение определяет окружность звезды (указана на горизонтальной оси графика). Если окружность будет больше, то штриховая линия гравитации звезды будет проходить выше сплошной кривой давления, гравитация преодолеет давление, и звезда будет схлопываться. Если окружность меньше, то давление преодолевает гравитацию, и звезда взрывается.
Пересечения нескольких штриховых линий со сплошной кривой соответствуют массам и окружностям равновесия белых карликов, показанным в правой части рис. 4.3. Для звезды меньшей массы (самая нижняя штриховая линия) окружность в точке пересечении является большой. Для звезды с большей массой (более высокая штриховая линия) — окружность меньше. Для звезды с массой больше 1,4 солнечной вообще нет пересечений, штриховая линия гравитации лежит всегда выше сплошной кривой давления и, таким образом, гравитация всегда преодолевает давление, независимо от того, какова окружность звезды, и заставляет звезду схлопываться.
После обеда Эддингтон сам отыскал Чандрасекара и сказал: «Я попросил Смарта дать Вам полчаса вместо обычных пятнадцати минут». Чандрасекар поблагодарил и собрался было что-то спросить относительно выступления Эддингтона, но тот, извинившись, откланялся. Раздражение Чандрасекара переросло в смятение.
СхваткаНа следующее утро Чандрасекар на поезде приехал в Лондон и взял такси до Берлингтон Хаус, где размещалось Королевское астрономическое общество. Когда он со своим другом Биллом Мак-Крэем ожидал начала заседания, к ним приблизился проходивший мимо Эддингтон, и Мак-Крэй, только что ознакомившийся с программой, спросил: «Профессор Эддингтон, что Вы нам поведаете о релятивистском вырождении?» В ответ Эддингтон, повернувшись к Чандрасекару, сказал: «Это будет для вас сюрпризом» и удалился, оставив Чандрасекара в еще большем недоумении.
Но вот заседание началось. Время медленно тянулось, пока президент Общества делал разные объявления, а астрономы выступали с докладами. Наконец, подошла очередь Чандрасекара. Подавив беспокойство, он выступил безупречно, особенно выделив в своем сообщении полученный им максимальный предел массы белых карликов.
После вежливых аплодисментов членов Общества президент предоставил слово сэру Артуру Эддингтону.

