- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Истина и красота. Всемирная история симметрии. - Стюарт Иэн
Шрифт:
Интервал:
Закладка:
Но если я поверну треугольник на 120°, вы не заметите никакой разницы между «было» и «стало». Чтобы показать, что я имею в виду, я тайно помечу углы кружками различного типа, так что мы сможем следить за тем, что куда отправляется. Эти кружки — только для нашей ориентации, они не составляют часть структуры, которая должна быть сохранена. Если вы закрываете глаза на кружки, если наш треугольник настолько лишен свойств, насколько это полагается всякому добропорядочному эвклидову объекту, то повернутый треугольник выглядит в точности как исходный.
Поворот на 120° является симметрией равностороннего треугольника.
Другими словами, поворот на 120° есть симметрия равностороннего треугольника. Преобразование (поворот) сохраняет структуру (форму и расположение).
Оказывается, что у равностороннего треугольника имеется ровно шесть различных симметрий. Вторая — это поворот на 240°. Еще три — отражения, под действием которых один из углов треугольника остается на месте, а два других меняются местами. А в чем состоит шестая симметрия? В неделании ничего: оставьте треугольник в покое. Это тривиально, однако же удовлетворяет условиям, требуемым от симметрии. На самом деле это преобразование удовлетворяет определению симметрии вне зависимости от того, какой объект рассматривается и какое свойство должно сохраняться. Если ничего не делать, то ничего и не меняется.
Эта тривиальная симметрия называется тождественной. Она может показаться не очень важной, но если от нее отказаться, то вся математика пойдет вкривь и вкось. Происходящее будет похоже на выполнение сложения чисел в отсутствие нуля или умножения в отсутствие единицы. Если же мы включаем тождественное преобразование, то все хорошо.
Шесть симметрий равностороннего треугольника.
Для равностороннего треугольника можно представлять себе единичный элемент как вращение на 0°. На рисунке изображены результаты применения шести симметрий к нашему равностороннему треугольнику. Это в точности шесть различных способов, которыми вырезанный из картона и вынутый из плоскости треугольник можно наложить на его исходное положение. Пунктирные линии показывают, где надо расположить зеркало, чтобы получить требуемое отражение.
Теперь я собираюсь убедить вас в том, что симметрии — это часть алгебры. Для этого я сделаю то же, что сделал бы любой алгебраист: выражу все в символах. Обозначим шесть симметрий буквами I, U, V, P, Q, R согласно приведенному выше рисунку. Единичный элемент — это I; два другие вращения суть U и V, а три отражения — P, Q и R. Те же самые символы я использовал выше для перестановок корней кубического уравнения. Для этого есть причина, которая, более того, скоро станет явной.
Галуа по максимуму использовал «групповое свойство» своих перестановок. Если применить любые две из них по очереди, то получится какая-то другая. Отсюда следует мощный намек на то, что нам следует делать с нашими шестью симметриями. Мы попарно «перемножим» их и посмотрим, что получится. Напомним соглашение: если X и Y — два преобразования симметрии, то произведение XY — это то, что получается, когда сначала применяется Y, а потом X.
Пусть, например, мы желаем узнать, что такое VU. Это означает, что сначала к треугольнику применяется U, а потом V. И вот U осуществляет вращение на 120°, а V затем вращает получающийся треугольник на 240°. Тем самым VU осуществляет вращение на 120° + 240° = 360°.
Ой, мы забыли включить это вращение.
Нет, не забыли! Если повернуть треугольник на 360°, то все вернется в точности туда, где было. А в теории групп важен конечный результат, а не путь, которым к нему пришли. На языке симметрий две симметрии считаются одинаковыми, если они приводят к одному и тому же конечному состоянию объекта. Поскольку VU дает тот же эффект, что тождественное преобразование, мы заключаем, что VU = I.
В качестве второго примера рассмотрим, что делает UQ. Преобразования выполняются следующим образом:
Как симметрии равностороннего треугольника соответствуют перестановкам.
Мы видим, чему равен результат перемножения симметрий: он равен P. Значит, UQ = P.
Из наших шести симметрий можно можно образовать тридцать шесть произведений, а вычисления можно свести в таблицу умножения. Получается в точности та же таблица, которая у нас была для шести перестановок корней кубического уравнения.
Обнаруженное совпадение дает пример одного из наиболее мощных методов во всей теории групп. Его истоки — в работах французского математика Камиля Жордана, до известной степени превратившего теорию групп из метода анализа решений уравнений в радикалах в самостоятельный предмет.
Около 1870 года Жордан привлек внимание к тому, что сейчас называют теорией представлений. Для Галуа группы были составлены из перестановок — способов перетасовки символов. Жордан начал задумываться о способах перетасовки более сложных пространств. Среди наиболее фундаментальных пространств в математике имеются многомерные пространства, а их самое важное свойство состоит в существовании прямых линий. Естественный способ преобразования такого пространства состоит в том, чтобы прямые линии оставались прямыми. Никаких изгибов, никаких скручиваний. Имеется много преобразований такого рода — вращения, отражения, изменения масштаба. Все они называются линейными преобразованиями.
Английский юрист и математик Артур Кэли открыл, что любое линейное преобразование можно связать с матрицей — квадратной таблицей из чисел. Любое линейное преобразование трехмерного, например, пространства можно задать, записав таблицу размером 3 на 3 из вещественных чисел. Так что преобразования можно свести к алгебраическим вычислениям.
Теория представлений позволяет начать с группы, которая не состоит из линейных преобразований, и заменить ее некоторой группой, состоящей из линейных преобразований. Преимущество конвертации группы в группу матриц состоит в том, что матричная алгебра является очень глубокой и мощной, и Жордан был первым, кто это увидел.
Взглянем на симметрии треугольника с Жордановой точки зрения. Вместо размещения разных кружков по углам треугольника я расставлю там символы a, b, c, соответствующие корням общего кубического уравнения. Тогда становится очевидным, что каждая симметрия треугольника также переставляет эти символы. Например, вращение U отправляет abc в cab.
Шесть симметрий треугольника естественно соответствуют шести перестановкам корней a, b, c. Более того, произведение двух симметрий соответствует произведению соответствующих перестановок. Но вращения и отражения в плоскости являются линейными преобразованиями — они сохраняют прямые линии. Так что мы по-другому интерпретировали группу перестановок — представили ее — как группу линейных преобразований, или, что то же самое, как некую группу матриц. Этой идее предстояло привести к глубоким следствиям как в математике так и в физике.
Глава 8
Посредственный инженер и трансцендентный профессор
Симметрия перестала быть туманным ощущением скрытого порядка или художественным восприятием изящества и красоты. Она превратилась в ясную математическую концепцию со строгим логическим определением. Появилась возможность вычислять симметрии и доказывать о них теоремы. Родился новый предмет — теория групп. Погоня человечества за симметрией достигла поворотной точки. В качестве платы за вход в сообщество посвященных требовалась готовность мыслить более концептуально. Концепция группы носила абстрактный характер, на несколько шагов удаленный от традиционного «простого продукта», состоящего из чисел и геометрических форм.

