- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
О времени, пространстве и других вещах. От египетских календарей до квантовой физики - Айзек Азимов
Шрифт:
Интервал:
Закладка:
Что же произошло?
Вы ждете быстрого и краткого ответа? Тогда вы плохо меня знаете. Я, как всегда, выберу свой любимый кружной путь и начну с того, что ксенон является газом.
Стать газом — это дело случая. Ни одно вещество не является газом от природы, просто иногда это диктуется температурными условиями. На Венере вода и аммиак — газы. На Земле аммиак — газ, а вода — жидкость. На Титане ни одно из этих веществ газом не является.
Далее мне потребуется некий критерий, который поможет в дальнейших рассуждениях. Пусть, например, любое вещество, остающееся в газообразном состоянии при -100 °C (-148° F, является Газом (с прописной буквы). Такая температура никогда не достигается па Земле даже в Антарктике, славящейся своими зверскими зимами, поэтому Газов па Земле нет, только газообразное состояния отдельных веществ (или полученных в химических лабораториях).
Тогда почему Газ — это Газ?
Для начала скажу, что любое вещество состоит из атомов или групп атомов, называемых молекулами. Между атомами или молекулами действуют силы притяжения, удерживающие их рядом. Тепло сообщает этим атомам или молекулам определенную кинетическую энергию, которая стремится оторвать их друг от друга, потому что каждый атом и молекула знают, куда им хотелось бы отправиться. (Поймите меня правильно, я вовсе не хочу сказать, что атомы знают, что делают, то есть обладают сознанием.
Просто это мой телеологический[9] способ ведения беседы. И пусть телеология запрещена для использования в научных статьях, по… сладок именно запретный плод.)
Силы притяжения между определенными атомами или молекулами обычно постоянны, однако кинетическая энергия изменяется с изменением температуры. Поэтому, если температура поднимется достаточно высоко, любая группа атомов или молекул разлетится по сторонам и вещество станет газом. При температуре выше 6000 °C все известные вещества становятся газами.
Конечно, существует очень немного веществ, межатомные или межмолекулярные силы в которых настолько велики, что для их преодоления необходим нагрев до 6000 °C. У многих веществ они, напротив, настолько слабы, что тепло обычного солнечного дня сообщает достаточно энергии для перехода в газообразное состояние. Пример обычный медицинский анестетик.
У других веществ силы межмолекулярного притяжения еще слабее, и для их поддержания в газообразном состоянии вполне достаточно тепла при температуре-100 °C. Они являются Газами, о которых я веду речь.
Межмолекулярные или межатомные силы возникают из-за распределения электронов в атомах или молекулах. Электроны распределены среди различных электронных оболочек, согласно системе, в подробности которой я вдаваться не буду. Например, атом алюминия содержит 13 электронов, распределенных следующим образом: 2 — во внутренней оболочке, 8 в еле-дующей, 3 — в наружной. Таким образом, распределение электронов в атоме алюминия можно обозначить следующим образом: 2,8,3. Внутренняя оболочка может содержать только 2 электрона, следующая — 8 электронов, а каждая из последующих может содержать больше 8 электронов. Если не считать ситуации, когда только внутренняя оболочка содержит электроны, у атомов в стабильном состоянии в наружной оболочке 8 электронов.
Известно шесть элементов, находящихся в состоянии максимальной стабильности.
Другие атомы, где электроны распределены не так удачно, вынуждены пытаться достичь этого, захватывая дополнительные электроны или освобождаясь от имеющихся. В процессе этого они подвергаются химическим превращениям. Однако атомы шести перечисленных выше химических элементов не нуждаются в подобных ухищрениях. Они вполне самодостаточны. У них нет необходимости в перемещении электронов, поэтому они не принимают участия в химических реакциях и являются инертными.
(По крайней мере, именно это я заявил бы до 1962 года.)
Атомы семейства инертных газов являются настолько самодостаточными, что эти атомы даже игнорируют друг друга. Между ними существует очень слабое притяжение, и эти вещества остаются газами при комнатной температуре. Все, кроме радона, являются Газами.
Какое-то притяжение между атомами, конечно, существует (в природе нет атомов или молекул, между которыми притяжение отсутствует вообще). Если некоторое время понижать температуру, наступит момент, когда силы притяжения возобладают над разрушительным действием кинетической энергии, и инертные газы станут инертными жидкостями.
А как обстоят дела с другими элементами? Как я уже говорил, в их атомах электроны распределены так, что обеспечивают устойчивость ниже максимальной. Каждый обладает тенденцией к перераспределению электронов в сторону увеличения устойчивости. Например, в атоме натрия Na электроны распределены следующим образом: 2,8,1. Избавившись от электрона во внешней оболочке, он приобрел бы устойчивое распределение 2,8, как у атома неона Ne. Атом хлора Cl имеет распределение 2,8,7. Если бы он смог приобрести один электрон во внешнюю оболочку, получился бы вполне устойчивый атом 2,8,8 — такое распределение электронов у инертного аргона.
Следовательно, если атом натрия встретится с атомом хлора, перенос электрона из одного атома в другой устроит обоих. Однако потеря отрицательно заряженного электрона оставляет атом натрия с дефицитом отрицательного заряда, что создает избыток положительного заряда. Атом превращается в положительно заряженный ион Na+). Атом хлора, получивший дополнительный электрон, приобрел избыточный отрицательный заряд и стал отрицательно заряженным ионом (Cl-).
Разноименные заряды притягиваются, поэтому ионы с разными зарядами окажутся притянутыми друг к другу. Сильное притяжение не может быть преодолено кинетической энергией, которой обладают атомы при комнатной температуре, поэтому ионы держатся друг за друга достаточно крепко, чтобы образовавшееся вещество NaCl — обычная поваренная соль — было твердым. Оно не переходит в газообразное состояние до достижения температуры 1413 °C.
Теперь рассмотрим атом углерода. Распределение электронов — 2,4. При потере 4 электронов он мог бы приобрести устойчивую конфигурацию 2, как в атоме гелия. При приобретении 4 электронов конфигурация стала бы 2,8, как в атоме неона, тоже устойчивая. Приобрести или избавиться от такого количества электронов сразу весьма непросто, поэтому атом углерода предпочитает понемногу делиться своими электронами. Он может выделить один электрон в совместное пользование своему соседу, который также отдаст для этой цели один электрон. В результате у двух соседних атомов углерода два электрона будут общими. Другой электрон можно выделить для совместного владения с другим соседом и т. д. Поэтому каждый атом углерода обычно окружен четырьмя другими.
Эти электроны го к местного пользования помещаются во внешней оболочке каждого атома углерода, внесшего свою долю. Каждый атом углерода имеет во внешней оболочке четыре собственных электрона и четыре заимствованных от соседей (по одному от каждого). Таким образом, каждый атом углерода имеет конфигурацию неона 2,8, являющуюся устойчивой, но только оставаясь очень близко к соседям. Результатом является сильное межатомное притяжение даже без участия разноименных электрических зарядов. Углерод — твердое вещество и переходит в газообразное состояние только при нагревании выше 4200 °C.
Атомы металлов также очень плотно прилегают друг к другу (но аналогичным причинам), и, к примеру, вольфрам переходит в газообразное состояние только при достижении температуры 5900 °C.
Таким образом, мы вряд ли можем ожидать появление Газа, если атомы достигают устойчивости, передавая друг другу электроны и получая электрический заряд или делясь электронами с соседями, в результате чего атомы «склеиваются» друг с другом.
Нам необходимо нечто среднее — ситуация, когда атомы приобретают устойчивость, делясь электронами (чтобы не возникало электрических зарядов), по при этом общее количество атомов, вовлеченных в этот процесс, было бы небольшим, чтобы в результате образовывались только очень маленькие молекулы. Внутри молекул силы притяжения могут быть весьма значительными, в результате чего молекулы будут распадаться только при очень высоких температурах. А вот силы притяжения между молекулами будут слабыми.
Давайте рассмотрим атом водорода. Он имеет только один электрон. Дна атома водорода объединяются вместе и пользуются ими совместно. Пока они остаются вместе, каждый может считать два электрона находящимися в своей внешней оболочке и будет иметь стабильную конфигурацию атома гелия. У них больше нет в запасе электронов, чтобы отдавать в совместное пользование с другими соседями. Поэтому образование молекулы на этом завершится. Молекула водорода состоит только из двух атомов (Н2).

