Как работает мозг - Стивен Пинкер
Шрифт:
Интервал:
Закладка:
Выход из этой ситуации – сделать сеть менее похожей на пресловутую собаку Павлова и добавить между уровнями входа и выхода еще один уровень: внутреннюю репрезентацию. Нужна такая репрезентация, которая эксплицирует все ключевые виды информации, связанные с входными сигналами, чтобы каждый выходной узел мог просто складывать входные значения и получать правильный ответ. Вот как это работает в случае с исключающим или:
Два скрытых узла между вводом и выводом вычисляют полезные промежуточные результаты. Узел слева вычисляет результат для простого случая «А или В», который, в свою очередь, активизирует выходной узел. Узел справа вычисляет результат для более сложного случая «А и В», и этот результат тормозит выходной узел. Выходной узел может просто вычислить «(А или В) и не (А и В)», это ему вполне по силам. Отметим, что на микроскопическом уровне построения простейших демонов из модельных нейронов без внутренних репрезентаций не обойтись; одних только связей по типу стимула и реакции не достаточно.
Более того, скрытый уровень сети можно научить самостоятельно устанавливать веса связей, используя более хитроумную версию метода обучения, чем в случае персептрона. Как и ранее, учитель задает сети правильный выход для каждого входа, а сеть подстраивает веса связей в большую или меньшую сторону, пытаясь сократить разницу. Однако в связи с этим возникает проблема, с которой не приходилось сталкиваться персептрону: как настроить связи, исходящие от узлов ввода к скрытым узлам. Проблема заключается в том, что учитель, если только он не умеет читать мысли, никак не может знать «правильные» значения для скрытых узлов, запечатанных внутри сети. Психологи Дэвид Румельхарт, Джеффри Хинтон и Рональд Уильямс пришли к хитрому решению. Узлы вывода распространяют обратно к каждому из скрытых узлов сигнал, представляющий сумму ошибок скрытого узла по всем узлам вывода, с которыми он связан («ты посылаешь слишком интенсивный сигнал возбуждения» или «ты посылаешь недостаточно интенсивный сигнал возбуждения» с количественным указанием отклонения). Этот сигнал может служить в качестве суррогата обучающего сигнала, который может использоваться для настройки вводов скрытых узлов. Связи, идущие от узлов уровня ввода к каждому из скрытых узлов, можно немного уменьшить или увеличить, чтобы сократить тенденцию скрытого узла к отклонению вверх или вниз с учетом текущего паттерна ввода. Данный метод, известный как метод обратного распространения ошибки обучения, может быть применен повторно к любому количеству уровней сети.
Мы пришли к тому, что многие психологи считают вершиной мастерства разработчика нейронных сетей. В некотором смысле мы сделали полный круг, потому что сеть, включающая скрытый уровень, напоминает ту самую условную карту логических вентилей, которую Мак-Каллок и Питтс предложили как модель нейронно-логического компьютера. На концептуальном уровне сеть со скрытыми узлами – это способ составить из совокупности суждений, которые могут быть истинными или ложными, сложную логическую функцию, скрепляемую связями «и», «или», «не» – но только с двумя отличительными особенностями. Первая особенность – это то, что значения здесь могут быть не только однозначно включенными или выключенными, но и варьируемыми, а следовательно – могут представлять ту или иную степень истинности или вероятности истинности данного утверждения, а не только абсолютно истинные или абсолютно ложные утверждения. Вторая особенность в том, что эту сеть можно во многих случаях обучить устанавливать правильные веса, подавая вводы и правильные для них выводы. Вдобавок к этим двум особенностям нужно отметить особое отношение: нужно ориентироваться на огромное количество связей между нейронами мозга и не смущаться, как бы много связей и логических элементов ни пришлось добавить в сеть. Придерживаясь такого морального принципа, можно создать сети, способные рассчитывать множество возможностей и, следовательно, использовать статистическую избыточность характеристик мира. А это, в свою очередь, позволит нейронным сетям распространять информацию с одного ввода на другие подобные вводы без дополнительного обучения, при условии, что для данной задачи подобные вводы дают подобные выводы102.
Это всего лишь несколько идей относительно того, как можно воплотить наших крохотных демонов с их досками объявлений в форму машин, отдаленно напоминающих нейронные сети. Эти идеи служат мостиком – пусть пока довольно шатким – на пути объяснения, которое начинается в концептуальной сфере (народная интуитивная психология и лежащие в ее основе своеобразные версии знаний, логики и теории вероятности), ведет дальше к правилам и репрезентациям (демонам и символам) и в конечном итоге приводит к реальным нейронам. Нейронные сети также скрывают приятные сюрпризы. Пытаясь разобраться в «программном обеспечении» мозга, мы в конечном итоге можем использовать только демонов достаточно глупых, чтобы их можно было заменить машиной. Если нам понадобится более умный демон, то придется еще как-то разгадать, как построить его из более глупых демонов. Процесс идет быстрее, а иногда и совсем иначе, когда разработчики нейронных сетей, идущие от нейронов к верхним уровням, создают целый арсенал готовых демонов, которые выполняют простые действия (как в случае с памятью, адресуемой по содержимому или с автоматически обобщающим информацию ассоциатором паттернов). Разработчики ментального программного обеспечения (которые, по сути, занимаются обратным проектированием) располагают неплохим арсеналом запчастей, из которых они могут собрать умных демонов.
Коннектоплазма
В какой же части мыслекода заканчиваются правила и репрезентации, и начинаются нейронные сети? Большинство когнитивистов приходят к единому мнению по крайней мере по поводу крайних точек. На высших уровнях когнитивной способности, где мы сознательно проходим каждый шаг, применяя правила, которые мы выучили в школе или обнаружили сами, мышление похоже на продукционную систему с символическими записями в памяти и демонами, выполняющими операции. На нижнем уровне записи и правила выполняются в рамках чего-то вроде нейронной сети, которая реагирует на знакомые паттерны и ассоциирует их с другими паттернами. Однако граница между ними остается предметом споров. Можно ли сказать, что простые нейронные сети отвечают за преобладающую часть повседневного мышления, а уровню явных правил и суждений оставляют только плоды учености? Или сети больше напоминают строительный материал, не способный на проявление человеческого рассудка, пока из него не будут построены структурированные репрезентации и программы?
Представители научной школы, получившей название «коннекционизм», во главе с психологами Дэвидом Румельхартом и Джеймсом Мак-Клелландом, утверждают, что простые сети сами по себе отвечают за преобладающую часть человеческого интеллекта. В своей крайней форме коннекционизм гласит, что мышление – это одна большая сеть обратного распространения ошибок скрытого уровня, или, возможно, группа из похожих или идентичных сетей, и интеллект формируется за счет того, что учитель – среда – настраивает веса связей. Единственная причина, по которой люди умнее крыс, состоит в том, что в наших сетях между стимулом и реакцией больше скрытых уровней, и мы живем в среде других людей, которые выступают в роли учителей сети. Правила и символы могут быть полезны как приближенная модель того, что происходит в сети, для психолога, который не может угнаться за миллионами потоков возбуждения, протекающих в связях, но не более того103.
Другой подход – который мне нравится больше – состоит в том, что одни только нейронные сети не могут выполнить всю работу. В значительной мере человеческий интеллект объясняется структурированием сетей на программы манипулирования символами. В частности, манипулирование символами лежит в основе языка и тех компонентов мышления, которые с ним взаимодействуют. Этим когнитивная способность не ограничивается, но это значительная ее часть. Это все, о чем мы можем рассуждать про себя и в разговоре с другими. Занимаясь психолингвистикой, я собрал множество доказательств того, что даже простейший навык, связанный с говорением на английском языке, – такой, как умение образовывать форму прошедшего времени от глагола (walked от walk, came от come) – с вычислительной точки зрения слишком сложен, чтобы его могла обслуживать одна нейронная сеть104. В этом разделе книги я представлю более общие доказательства. Требует ли содержание наших повседневных мыслей (информация, которой мы обмениваемся в разговоре) вычислительного устройства, предназначенного для реализации глубоко структурированного мыслекода, или с ним может справляться нейронная сеть общего назначения – то, что один остряк назвал «коннекто-плазмой»?105 Я покажу вам, что наши мысли отличаются тонким логическим структурированием, которое не под силу никакой сети однородных уровней, состоящей из узлов.