- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Против богов: Укрощение риска - Питер Бернстайн
Шрифт:
Интервал:
Закладка:
Впервые он обратился к вероятностным проблемам при описании метода определения орбиты на основе множества дискретных наблюдений в книге о движении небесных тел, опубликованной в 1809 году под названием «Theoria Motus» («Теория движения»). Когда в 1810 году «Theoria Motus» попала в руки Лапласу, тот сразу ухватился за нее и занялся выяснением некоторых неясностей, которых Гауссу не удалось избежать.
Но наиболее ценный вклад в теорию вероятностей Гаусс внес в результате работы, к вероятности никакого отношения не имеющей, а именно занимаясь геодезическими измерениями кривизны Земли для определения точности географических наблюдений. Из-за шарообразности Земли расстояние между двумя точками на ее поверхности отличается от расстояния между ними, пролетаемого вороной. Эта разница пренебрежимо мала для расстояния в несколько миль, но при расстоянии более десяти миль она становится ощутимой.
В 1816 году Гаусс получил приглашение руководить геодезическими съемками в Баварии и состыковать их результаты с такими же измерениями, уже выполненными в Дании и Северной Германии. Надо полагать, эта работа была малоинтересна для такого до корней волос теоретика, каким был Гаусс. Ему пришлось покинуть кабинет, работать на пересеченной местности, общаться с чиновниками и прочим людом, включая коллег, интеллектуальный уровень которых был ему неинтересен. Но работа затянулась до 1848 года, и опубликованные в конце концов результаты составили шестнадцать томов.
Поскольку невозможно обмерить каждый квадратный дюйм земной поверхности, геодезическая съемка представляет собой замеры, выполняемые на заданном расстоянии друг от друга. Анализируя распределение результатов этих замеров, Гаусс заметил, что они имеют разброс, но, когда число замеров растет, результаты группируются вокруг некоторой центральной точки. Этой центральной точкой является среднее значение всех результатов измерений, а сами результаты распределяются симметрично по обе стороны от среднего значения. Чем больше измерений выполнялось, тем больше прояснялась картина распределения результатов и тем больше она напоминала колоколообразную кривую, полученную де Муавром 83 годами раньше.
Связь между риском и измерением кривизны земной поверхности оказалась теснее, чем можно было предположить. Пытаясь установить кривизну Земли, Гаусс день за днем осуществлял на баварских холмах одно геодезическое измерение за другим, пока не набралось огромное количество наблюдений. Точно так же, как мы рассматриваем опыт прошлого для вынесения суждений о вероятности того или иного направления развития событий в будущем, Гаусс оценивал накопившиеся результаты и выносил суждение о том, как кривизна земной поверхности влияет на результаты замеров расстояний между разными точками в Баварии. Он мог судить о точности своих наблюдений по распределению массы результатов наблюдений вокруг среднего значения.
Принимая связанные с риском решения, мы на каждом шагу встречаемся с разновидностями вопроса, на который он пытался ответить. Сколько в среднем ливней следует ожидать в Нью-Йорке в апреле и каковы наши шансы остаться сухими, если, уезжая на неделю в Нью-Йорк, мы не захватим плащ? Какова вероятность попасть в автомобильную аварию, если мы собираемся проехать 3000 миль, чтобы пересечь страну? Какова вероятность падения курса акций на 10% в будущем году?
***Разработанные Гауссом методы получения ответов на подобные вопросы настолько общеизвестны, что мы редко задаемся вопросом об их происхождении. Но без этих методов невозможно оценить степень риска, с которым мы сталкиваемся в жизни, и принимать обоснованные решения о том, стоит или не стоит идти на риск. Без этих методов мы не смогли бы оценивать точность имеющейся информации, как не смогли бы оценивать вероятность того, что некое событие произойдет — дождь, смерть 85-летнего человека или падение курса акций на 20%, победа русских на Кубке Дэвиса или демократического большинства на выборах в конгресс, что сработают ремни безопасности при аварии или при бурении наугад будет открыто месторождение нефти.
Процесс оценки данных начинается с анализа колоколообразной кривой, главным назначением которой является не определение точного значения, а оценка ошибок. Если бы результат каждого измерения точно соответствовал тому, что мы измеряем, не о чем было бы говорить. Если бы люди, слоны, орхидеи или гагарки не отличались друг от друга в пределах своего вида, жизнь на Земле была бы совсем другой. Но в мире господствует не тождество, а сходство; ни одно измерение не является абсолютно точным. При наличии нормального распределения колоколообразная кривая упорядочивает эту путаницу. Фрэнсис Гальтон, с которым мы встретимся в следующей главе, с немалой долей пафоса писал о нормальном распределении:
«"Закон частоты ошибок"... с непоколебимым самообладанием безмятежно царит в немыслимом хаосе. Чем больше толпа... тем больше в ней единства. Это предельный закон хаоса. Чем больше беспорядочных элементов попадает в его руки... тем более неожиданной и прекрасной оказывается скрывающаяся за видимым хаосом форма упорядоченности»[13].
Большинство из нас сталкивается с колоколообразной кривой еще в школьные годы. Учитель выставляет оценки «по кривой», в случайном порядке, он не начинает с низшей, чтобы закончить высшей. Успеваемость средних студентов вознаграждается средней троечкой. Слабые и сильные получают оценки, распределяющиеся симметрично относительно средней. Даже если все работы выполнены прекрасно или, наоборот, безобразно, в совокупности имеющихся работ лучшая оценивается по высшему баллу, а худшая по низшему.
Многие натуральные показатели, например рост людей в группе или длина среднего пальца, описываются нормальным распределением. По утверждению Гальтона, для того чтобы результаты наблюдений располагались нормально или симметрично относительно среднего значения, необходимы два условия. Во-первых, число наблюдений должно быть достаточно велико, во-вторых, наблюдения должны быть независимыми, как бросание кости. Упорядочить можно только хаос.
Взаимозависимость входящих в выборку данных может стать причиной серьезных ошибок. В 1936 году ныне забытый журнал «Literary Digest» предпринял опрос для предсказания исхода борьбы между кандидатами в президенты Франклином Рузвельтом и Альфредом Лэндоном. Редакция разослала лицам, отобранным с использованием телефонной книги и данных о регистрации автомобилей, около десяти миллионов опросных листов в виде открыток с оплаченным возвратом. Подсчет возвращенных открыток показал, что за Лэндона собираются голосовать 59% избирателей, а за Рузвельта только 41%. Однако в ходе выборов Лэндон получил 19% голосов, .в то время как за Рузвельта проголосовали 61% избирателей. Дело в том, что в середине 30-х годов владельцы автомобилей и телефонов не составляли типичной выборки американских избирателей: их избирательные предпочтения были обусловлены их уровнем жизни, который был тогда не по карману большинству населения.
***По-настоящему независимые наблюдения дают богатую информацию о вероятностях. Возьмем для примера кости.
Все шесть сторон костяного кубика могут выпасть с равной вероятностью. Если графически представить вероятность получить каждое из шести возможных значений, мы получим горизонтальную прямую на уровне 1/6. График не будет иметь ничего общего с нормальной кривой, как выборка, состоящая из одного броска, ничего не скажет о шансах ожидания того или иного значения кости. Мы окажемся в состоянии слепых, ощупывающих слона.
Бросим теперь кость шесть раз и посмотрим, что получится. (Я моделировал этот опыт на моем компьютере, чтобы быть уверенным в том, что в результате получаются случайные числа.) Первая серия из шести бросков дала четыре пятерки, одну шестерку и одну четверку, в среднем ровно 5,0. Во второй серии получилась смесь из трех шестерок, двух четверок и одной двойки, в среднем 4,7. Информации не намного больше.
После десяти испытаний по шесть бросков каждый средние результаты по шести броскам стали группироваться около значения 3,5, являющегося средним числом очков на поверхности кости: (1 + 2 + + 3 + 4 + 5 + 6):6 = 3,5 — и ровно половиной величины математического ожидания при бросании двух костей. Шесть моих средних были ниже 3,5 и четыре превышали это число. Вторая серия из десяти бросков дала следующие результаты: четыре раза среднее значение было ниже 3,0, четыре раза оно превышало 4,0, было также по одному значению выше 4,5 и ниже 2,5.
Следующим шагом было определение среднего значения первых десяти испытаний по шесть бросков каждый. В то время как распределение в каждом из этих испытаний, рассматриваемых по отдельности, само по себе мало о чем говорило, среднее от средних оказалось равным 3,48! Теперь среднее уточнилось, но среднее квадратичное отклонение оказалось равным 0,82 — значительно большим, чем хотелось бы{2}.

