- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс
Шрифт:
Интервал:
Закладка:
До сих пор все выглядит, пожалуй, слишком просто, даже тривиально, – возможно, как и все элементарные истины. Но мы находимся на пороге мира калибровочных теорий взаимодействия частиц – одного из форпостов современной физики. Поэтому займемся демонстрацией нетривиальности сказанного выше. Мы убедимся, что из этих самоочевидных утверждений вытекают ошеломляющие следствия.
В главе 3 я уже объяснял, или, по крайней мере, отмечал, что уравнения движения частиц могут быть получены, если сперва вывести выражение для действия, связанного с определенной траекторией, а затем найти траекторию, на которой действие принимает наименьшее значение. Эта траектория наименьшего действия и есть та, которую «выбирает» частица – единственная возможная траектория, остающаяся после учета воздействия соседних частиц. Далее я говорил, что дифференциальные уравнения Ньютона можно рассматривать как способ «инструктирования» частицы, следуя которому она нащупывает свою траекторию, совершая один бесконечно малый шаг за другим. Это обсуждение велось на примере реальных знакомых частиц, таких как электроны, но оно применимо и к менее осязаемым частицам электромагнитного излучения, фотонам, – ведь в квантовой механике все оказывается имеющим двойную природу частиц и волн. Следовательно, принцип, в соответствии с которым частица выбирает траекторию наименьшего действия, может быть приложен к электромагнетизму и его частицам – фотонам.
Выражение для действия в случае электромагнетизма формулируется математически, затем минимизируется, и из этой минимизации вытекает эквивалент уравнений Ньютона, но теперь эти уравнения описывают поведение электромагнитного поля. Они известны под названием уравнений Максвелла – их вывел Джеймс Клерк Максвелл (1831–1879) в 1861 году. Звезда Максвелла светила на научном небосводе ослепительно ярко, но недолго. Его уравнения были математическим выражением пионерских экспериментальных исследований электричества и магнетизма, выполненных Майклом Фарадеем (1791–1867) в Королевском институте в Лондоне. Уравнения Максвелла демонстрировали взаимосвязь между «квадратным» электричеством и «шестиугольным» магнетизмом, объединив их в «кубический» электромагнетизм. Мысленно представить себе это объединение можно с помощью следующей подсказки: надо, как я объясняю это более подробно в главе 8, осознать, что согласно специальной теории относительности движение – это «вкручивание» того, что вы представляете себе как пространство, внутрь времени, и наоборот. Чем быстрее вы движетесь, тем сильнее это «вкручивание», – то, что вначале выглядело «электрической» квадратной гранью куба, все больше и больше становится похоже на шестиугольный «магнит», и наоборот.
Уравнения Максвелла в сущности подводят итог унификации законов электричества и магнетизма. Поэтому, коль скоро мы знаем, откуда взялись эти уравнения, нам следует знать и то, откуда взялись сами эти законы.
* * *
В конце 1700-х итальянский математик Жозеф-Луи Лагранж (1736–1813; мы знаем его под этим именем, приобретенным за долгую жизнь в Париже, хотя от рождения он звался Джузеппе Лодовико Лагранжиа) сформулировал особо элегантную версию ньютоновской механики, которая и сегодня остается идеально приспособленной к тому преобразованию уравнений движения, которое мы ищем. Разработанная им процедура содержит некоторые вынужденные предположения. Из-за различных технических соображений, в которых сейчас нет необходимости разбираться, нужно ввести некоторую математическую функцию, называемую лагранжианом. Существуют различные правила записи лагранжиана: одно из них заключается в том, что когда функция используется для оценки величины действия, и затем это действие минимизируется на пути между двумя точками, то результирующим выражением являются экспериментально подтвержденные уравнения движения – в данном случае вдохновленные опытами Фарадея уравнения Максвелла. Если же минимизированное действие не соответствует известным законам движения, значит, ваша догадка о форме лагранжиана была неверной, – вам придется вернуться к началу пути и пройти его снова, и так до тех пор, пока вы не получите уравнений Максвелла.
Оказывается, что эта цепочка шагов: лагранжиан → действие → минимизация → уравнения Максвелла → опыты Фарадея – проходится до конца, если лагранжиан выражается в терминах волны и если эта волна имеет некоторое специальное отношение к электромагнитному полю, которое лагранжиан описывает. В этом суть дела. Мы можем неограниченно перемещать волну вперед и назад вдоль направления ее распространения (то есть менять ее калибровку), но так как эти изменения не могут вести ни к каким физическим эффектам, не может измениться и лагранжиан – иначе уравнения движения, уравнения Максвелла, больше не соответствовали бы наблюдениям. Лагранжиан, таким образом, должен обладать глобальной калибровочной инвариантностью.
Теперь пришло время поженить Нётер с Лагранжем. Вспомним главу 2: Эмми Нётер выявила связь между симметрией и законами сохранения. Глобальная калибровочная инвариантность – это симметрия. Значит, с ней должен быть связан какой-то закон сохранения. Он оказался законом сохранения электрического заряда. Таким образом, электрический заряд нельзя ни создать, ни уничтожить.
Могу попробовать объяснить, как этот закон сохранения вытекает из глобальной калибровочной инвариантности. Представьте себе маленький прозрачный куб, помещенный в область распространения волны. Когда волна немного смещается (ее глобальная калибровка изменяется при этом везде на одну и ту же величину), часть ее проходит в куб сквозь одну из его граней, а другая часть выходит сквозь противоположную. Чтобы лагранжиан по всей области был инвариантен (независимо от расположения области, а также и в целом), любое расхождение между входящим и выходящим потоками должно быть скомпенсировано созданием или уничтожением амплитуды внутри куба. Это стандартная интерпретация уравнения непрерывности, которое представляет собой математическую формулировку следующего утверждения: результирующий поток сквозь стенки области должен равняться скорости создания или разрушения заряда внутри области. Другими словами, заряд сохраняется [53].
В этом обсуждении я бы хотел сделать еще два шага. Первое: мне кажется вероятным, что, когда Вселенная вдруг начала существовать и ничего особенного при этом не произошло, не было никакого предварительного выбора фаз волн (относительного расположения их пиков), которые через какое-то время должны были оказаться основой электромагнетизма. То есть, когда люди наткнулись на уравнения, описывающие электромагнетизм, перед этими людьми не стояло требования определить и принять какую-то конкретную калибровку: годилась любая. Другими словами, в результате бездействия в начале Вселенной уравнения электромагнетизма глобально калибровочно инвариантны, вследствие чего электрический заряд и сохраняется.
И второе. Если в результате бездействия в миг Творения электрический заряд сохраняется, и Вселенная должна довольствоваться тем, что в ней есть, – и так всегда было и всегда будет, – то возникает два естественных вопроса: каково же полное количество электрического заряда во Вселенной и как этот заряд возник абсолютно из ничего.
Мы можем быть полностью уверены, что знаем ответ на один из этих вопросов. Полный заряд Вселенной равен нулю: в ней множество положительных зарядов (во всех атомных ядрах, сколько их есть) и множество отрицательных (во

