- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Купец и волшебные врата (сборник) - Тед Чан
Шрифт:
Интервал:
Закладка:
В 1931 году Курт Гёдель доказал две теоремы. Первая, по сути, показывает, что математика содержит утверждения, которые, возможно, истинны, но по природе своей недоказуемы. Даже столь элементарная формальная система, как арифметика, допускает утверждения строгие, осмысленные и кажущиеся истинными, однако эта истинность не может быть доказана формальным путем.
Его вторая теорема показывает, что претензия арифметики на полноту как раз и является таким утверждением: она не может быть доказана никаким методом, опирающимся на аксиомы арифметики. Иными словами, арифметика как формальная система не может гарантировать от таких результатов, как «1 = 2». Предположим, с подобными противоречиями до сих пор никто не сталкивался, но невозможно доказать, что никто никогда с ними так и не столкнется.
6aИ снова он зашел в ее кабинет. Когда Рене подняла на него взгляд, Карл начал решительно:
— Рене, очевидно; что… Она его оборвала:
— Хочешь знать, что меня беспокоит? Ладно, я тебе скажу. — Достав чистый лист бумаги, Рене села за стол. — Подожди, это займет всего минутку.
Карл снова открыл было рот, но Рене махнула ему, чтобы замолчал. Сделав глубокий вдох, она начала писать.
Посередине она провела черту «верху вниз, разделив страницу на две колонки. Вверху первой поставила цифру 1, вверху второй — цифру 2. Ниже стремительно нацарапала какие-то символы, которые в следующих строках развила в серию новых. Она скрежетала зубами, пока писала: было такое ощущение, что, рисуя значки, она ногтями скребет по грифельной доске.
Приблизительно в двух третях от начала страницы Рене стала сводить длинные серии символов ко все более коротким. «А теперь завершающий штрих», — подумала она. Осознала, что слишком давит на бумагу, и ослабила хватку — пальцы уже не так сжимали карандаш. В следующей строке серии стали идентичными. Внизу страницы поверх разделительной черты она с силой вывела знак равенства.
Лист она протянула Карлу.
Он только поглядел на нее, показывая, что не понимает.
— Посмотри наверх. — Он посмотрел. — Теперь посмотри вниз.
Он нахмурился.
— Не понимаю.
— Я открыла формализм, который позволяет приравнять любое число к любому другому числу. На этой странице доказывается, что один равен двум. Выбери любые два числа; я могу доказать, что и они тоже равны.
Карл как будто пытался что-то вспомнить.
— Это ведь деление на ноль, верно?
— Нет. Тут нет никаких запрещенных операций, никаких некорректно заданных условий, никаких независимых аксиом, которые бы подразумевались имплицитно, ничего. В доказательстве не использовано решительно ничего запретного.
Карл покачал головой.
— Подожди-ка. Очевидно, что единица не равна двум.
— Но формально равна — доказательство ты держишь в руке. Все мною использованное — в рамках абсолютно бесспорных утверждений.
— Но ты получила противоречие.
— Вот именно. Арифметика как формальная система является неполной.
6b— Ты не можешь найти, где ошибка, это ты хочешь сказать?
— Да нет же, ты не слушаешь, Ты думаешь, я мечусь из-за такой малости? В доказательстве ошибки нет.
— Иными словами, ошибка в том, что считается общепринятым?
— Точно.
— Ты… — Он остановился, но слишком поздно. Она поглядела на него враждебно. Ну конечно, она уверена. Он задумался о том, что это подразумевает.
— Теперь понимаешь? — спросила Рене. — Я опровергла большую часть математики. Иными словами, она утратила смысл.
Она становилась все более возбужденной, почти пришла в смятение.
— Как ты можешь такое говорить? — Карл тщательно подбирал слова. — Математика все еще работает. Наука и экономика не рухнут вдруг из-за этого открытия.
— Это потому, что математика, которой они пользуются, всего лишь трюк. Мнемонический костыль, как считать костяшки пальцев, чтобы определить, в каком месяце тридцать один день.
— Но это не одно и то же.
— Почему же? Сейчас математика не имеет к реальности решительно никакого отношения. Куда там такие понятия, как мнимые числа и бесконечно малые величины! Теперь треклятое сложение целых чисел не имеет отношения к счету на пальцах. На пальцах один плюс один всегда выходит два, но на бумаге я могу дать бесконечное число ответов, и все они будут равно действительными и, следовательно, равно недействительными. Я могу написать самую элегантную теорему на свете, а значить она будет не больше, чем какое-нибудь дурацкое уравнение. — У нее вырвался горький смешок. — Позитивисты раньше говорили, что вся математика чистой воды тавтология. Они все напутали: она чистой воды противоречие.
Карл попытался зайти с другой стороны.
— Подожди. Ты только что упомянула мнимые числа. Почему твои выкладки хуже их? Когда-то математики считали, что они не имеют смысла, а сейчас они приняты как азы. Ситуация та же.
— Не та же! Там решение заключалось в расширении контекста, а здесь это ничего не даст. Мнимые числа привнесли в математику нечто новое, а мой формализм пересматривает уже существующее.
— Но если изменить контекст, посмотреть на это в другом свете…
Она закатила глаза.
— Нет! Это следует из аксиом с такой же непреложностью, как сложение; это никак не обойдешь. Поверь моему слову.
7В 1936 году Герхард Гентцен привел доказательство полноты арифметики, но для этого ему пришлось прибегнуть к некоему спорному методу, известному как бесконечная индукция. Эта последняя не относилась к обычным методам доказательства и казалась мало уместной как гарантия непротиворечивости арифметики. Гентцен всего лишь доказал очевидное, допустив сомнительное.
7aИз Беркли позвонил Каллаган, но не смог предложить избавления. Он сказал, что и дальше будет изучать ее работу, но, похоже, она наткнулась на что-то фундаментальное и тревожное. Он хотел знать, планирует ли она опубликовать свой теоретический формализм, поскольку если он содержит ошибку, которую не может найти ни один из них, в математическом сообществе обязательно отыщутся те, кто сможет.
Рене едва в силах была слушать его голос и пробормотала, что еще с ним свяжется. В последнее время, особенно после ссоры с Карлом, ей стало трудно разговаривать с людьми. Остальные на факультете начали ее избегать. Она не могла ни на чем сосредоточиться, а прошлой ночью ей приснился кошмар, в котором она открыла формализм, позволяющий переводить произвольные утверждения в математическое выражение, и тогда она доказала, что жизнь эквивалентна смерти.
Вот это ее напугало: возможность того, что она теряет рассудок. Она определенно утратила ясность мысли, то есть уже подошла достаточно близко.
(adsbygoogle = window.adsbygoogle || []).push({});