- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Занимательная астрономия - Яков Перельман
Шрифт:
Интервал:
Закладка:
Сейчас выведенным правилом воспользуемся для решения любопытной задачи из области мифологии. Древнегреческий миф о Вулкане повествует, между прочим, что этот бог уронил однажды свою наковальню, и она падала с неба целых 9 дней, прежде чем долетела до Земли. По мнению древних, срок этот отвечает представлению о невообразимой высоте небес, где обитают боги; ведь с вершины Хеопсовой пирамиды наковальня долетела бы до Земли всего в 5 секунд!
Нетрудно, однако, вычислить, что вселенная древних греков, если измерять ее по этому признаку, была бы, по нашим понятиям, довольно тесновата.
Мы уже знаем, что Луна падала бы на Землю в течение 5 дней, мифическая же наковальня падала 9 дней. Значит, «небо», с которого упала наковальня, находится дальше лунной орбиты. На много ли дальше? Если умножим 9 дней на – √32, мы узнаем величину того периода, в течение которого наковальня обращалась бы вокруг земного шара, будь она спутником нашей планеты: 9 х 5,6 = 51 суткам. Применим теперь к Луне и к нашему воображаемому спутнику-наковальне третий закон Кеплера.
Составим пропорцию
Подставив числа, имеем
Отсюда неизвестное расстояние наковальни от Земли нетрудно вычислить:
Вычисление дает следующий результат: 580 000 км. Итак, вот как мизерно было на взгляд современного астронома расстояние до неба древних греков: всего в полтора раза больше расстояния до Луны. Мир древних кончался примерно там, где, по нашим представлениям, он только начинается.
Границы солнечной системыТретий закон Кеплера дает также возможность вычислить, насколько далеко должна быть отодвинута граница нашей солнечной системы, если считать крайними ее точками самые отдаленные концы (афелии) кометных орбит. Нам приходилось уже беседовать об этом раньше, здесь произведем соответствующий расчет. Мы упоминали в главе III о кометах, имеющих очень долгий период обращения: в 776 лет. Вычислим расстояние х афелия такой кометы, зная, что ближайшее ее расстояние от Солнца (перигелий) равно 1 800 000 км.
Привлекаем в качестве второго тела Землю и составляем пропорцию:
Отсюда
И, следовательно,
х = 25 318 000 000 км.
Мы видим, что рассматриваемые кометы должны уходить в 182 раза дальше от Солнца, чем Земля, и значит, в четыре с половиной раза дальше, чем последняя из известных нам планет – Плутон.
Ошибка в романе Жюля ВернаВымышленная комета «Галлия», на которую Жюль Берн перенес действие романа «Гектор Сервадак», совершает полный оборот вокруг Солнца ровно в два года. Другое указание, имеющееся в романе, относится к расстоянию афелия этой кометы: 820 миллионов км от Солнца. Хотя расстояние перигелия в романе не указано, мы по тем двум данным, какие сейчас приведены, уже вправе утверждать, что такой кометы в нашей солнечной системе быть не может. В этом убеждает нас расчет по формуле третьего закона Кеплера.
Обозначим неизвестное расстояние перигелия через х миллионов км. Большая ось орбиты кометы выразится тогда через х+820 миллионов км, а большая полуось через (х+820)/2 миллионов км. Сопоставляя период обращения и расстояние кометы с периодом и расстоянием Земли, имеем по закону Кеплера
откуда
х = -343.
Отрицательный результат для величины ближайшего расстояния кометы от Солнца указывает на несогласованность исходных данных задачи. Другими словами, комета со столь коротким периодом обращения – 2 года – не могла бы уходить от Солнца так далеко, как указано в романе Жюля Верна.
Как взвесили Землю?Существует анекдотический рассказ про наивного человека, которого всего более удивляло в астрономии то, что ученые узнали, как звезды называются. Если говорить серьезно, то наиболее удивительным достижением астрономов должно, вероятно, казаться то что им удалось взвесить и Землю, на которой мы живем, и далекие небесные светила. В самом деле: каким способом, на каких весах могли взвесить Землю и небо?
Рис. 87. На каких весах могли взвесить Землю?
Начнем со взвешивания Земли. Прежде всего отдадим себе отчет, что следует понимать под словами «вес земного шара». Весом тела мы называем давление, которое оно оказывает на свою опору, или натяжение, которое оно производит на точку привеса. Ни то, ни другое к земному шару неприменимо: Земля ни на что не опирается, ни к чему не привешена. Значит, в таком смысле земной шар не имеет веса. Что же определили ученые, «взвесив» Землю? Они определили ее массу. В сущности, когда мы просим отвесить нам в лавке 1 кг сахара, нас нисколько ведь не интересует сила, с какой этот сахар давит на опору или натягивает нить привеса. В сахаре нас интересует другое: мы думаем лишь о том, сколько стаканов чая можно с ним выпить, другими словами, нас интересует количество заключающегося в нем вещества.
Но для измерения количества вещества существует только один способ: найти, с какой силой тело притягивается Землей. Мы принимаем, что равным массам отвечают равные количества вещества, а о массе тела судим только по силе его притяжения, так как притяжение пропорционально массе.
Переходя к весу Земли, мы скажем, что «вес» ее определится, если станет известна ее масса; итак, задачу определения веса Земли надо понимать как задачу исчисления ее массы.
Рис. 88. Один из способов определения массы Земли: весы Йолли
Опишем один из способов ее решения (способ Йолли, 1871). На рис. 88 вы видите очень чувствительные чашечные весы, в которых к каждому концу коромысла подвешены две легкие чашки: верхняя и нижняя. Расстояние от верхней до нижней 20–25 см. На правую нижнюю чашку кладем сферический груз массой mv Для равновесия на левую верхнюю чашку положим груз тт Эти грузы не равны, так как, находясь на разной высоте, они с разной силой притягиваются Землей. Если под правую нижнюю чашку подвести большой свинцовый шар с массой М, то равновесие весов нарушится, так как масса ml будет притягиваться массой свинцового шара М с силой Fv пропорциональной произведению этих масс и обратно пропорциональной квадрату расстояния d, разделяющего их центры:
где к – так называемая постоянная тяготения.
Чтобы восстановить нарушенное равновесие, положим на верхнюю левую чашку весов малый груз массой п. Сила, с которой он давит на чашку весов, равна его весу, т. е. равна силе притяжения этого груза массой всей Земли. Эта сила F равна
Пренебрегая тем ничтожным влиянием, которое присутствие свинцового шара оказывает на грузы, лежащие на верхней левой чашке, мы можем написать условие равновесия в следующем виде:
В этом соотношении все величины, кроме массы Земли
, могут быть измерены. Отсюда определим
В тех опытах, о которых говорилось, М= 5775,2 кг, R = 6366 км, d = 56,86 см, m1 = 5,00 кг и п = 589 мг.
В итоге масса Земли оказывается равной 6,15 х 1027 г.
Современное определение массы Земли, основанное на большом ряде измерений, дает
= 5,974 х 1027г, т. е. около 6 тысяч триллионов тонн. Возможная ошибка определения этой величины не более 0,1 %.
Итак, астрономы определили массу земного шара. Мы имеем полное право сказать, что они взвесили Землю, потому что всякий раз, когда мы взвешиваем тело на рычажных весах, мы, в сущности, определяем не в е с его, не силу, с какой оно притягивается Землей, а массу: мы устанавливаем лишь, что масса тела равна массе гирь.
Из чего состоят недра Земли?Здесь уместно отметить ошибку, которую приходится встречать в популярных книгах и статьях. Стремясь упростить изложение, авторы представляют дело взвешивания Земли так: ученые измерили средний вес 1 см3 нашей планеты (т. е. ее удельный вес) и, вычислив геометрически ее объем, определили вес Земли умножением ее удельного веса на объем. Указываемый путь, однако, неосуществим: нельзя непосредственно измерить удельный вес Земли, так как нам доступна только сравнительно тонкая наружная ее оболочка[49] и ничего не известно о том, из каких веществ состоит остальная, значительно большая часть ее объема.
Мы уже знаем, что дело происходило какраз наоборот: определение массы земного шара предшествовало определению его средней плотности. Она оказалась равной 5,5 г на 1 см3 – гораздо больше, чем средняя плотность пород, составляющих земную кору. Это указывает на то, что в глубине земного шара залегают очень тяжелые вещества. По их предполагаемому удельному весу (а также и по другим основаниям) раньше думали, что ядро нашей планеты состоит из ж е л е з а, сильно уплотненного давлением вышележащих масс. Сейчас считают, что в общем центральные области Земли не отличаются по составу от коры, но плотность их больше вследствие огромного давления.

