- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио
Шрифт:
Интервал:
Закладка:
Рассмотрим простой пример того, как эти две области встречаются, так сказать, посередине и дополняют друг друга. Начнем с того факта, что статистические исследования показывают, что измерения самых разных физических величин и даже человеческих черт распределяются согласно кривой нормального распределения. Но на самом деле кривая нормального распределения – это не какая-то одна кривая, а целое семейство кривых, описываемых одной и той же общей функцией, и все они полностью характеризуются всего двумя математическими величинами. Первая из них – среднее значение – это центральное значение, относительно которого распределение симметрично. Эта величина зависит, разумеется, от того, какую именно переменную измеряют (рост, вес, IQ и так далее). Среднее значение одной и той же переменной может быть разным в разных популяциях. Например, средний рост шведов, скорее всего, отличается от среднего роста перуанцев. Вторая величина, определяющая кривую нормального распределения, называется стандартным отклонением. Это мера того, насколько тесно данные сосредоточены вокруг среднего значения. На рис. 36 у кривой нормального распределения (а) самое большое стандартное отклонение, поскольку значения рассеяны шире. Однако тут мы сталкиваемся с интересным фактом. Если с помощью интегрирования сосчитать площадь под кривой, легко математически доказать, что независимо от среднего значения и величины стандартного отклонения, 68,2 % измерений лежат в области, ограниченной одним стандартным отклонением по обе стороны от среднего значения (рис. 37). Иначе говоря, если среднее значение IQ в определенной (крупной) популяции равно 100, а стандартное отклонение равно 15, то 68,2 % людей в этой популяции обладают IQ между 85 и 115. Более того, для всех кривых нормального распределения 95,4 % всех случаев лежат в пределах двух стандартных отклонений от среднего, а 99,7 % данных попадают в пределы трех стандартных отклонений по обе стороны от среднего (рис. 37). Из этого следует, что в вышеприведенном примере 95,4 % популяции обладают IQ между 70 и 130, а 99,7 % – между 55 и 145.
Теперь предположим, что мы хотим предсказать, какова вероятность, что у случайно выбранного человека из этой популяции IQ окажется между 85 и 100. Рис. 37 подсказывает нам, что эта вероятность – 0,341 (или 34,1 %), поскольку по законам теории вероятности вероятность – это количество желаемых результатов, деленное на общее количество возможностей. А если нам интересно выяснить, какова вероятность, что кто-то (случайно выбранный) из этой популяции обладает IQ выше 130, то взгляд на рис. 37 покажет, что эта вероятность равна примерно 0,022, то есть 2,2 %. Примерно так же, опираясь на свойства нормального распределения и на метод интегрального исчисления (для вычисления площади под кривой), можно вычислить вероятность, что значение IQ попадет в тот или иной заданный диапазон. Иными словами, ответы нам дают теория вероятности и ее половинка-помощница статистика – в сочетании.
Как я уже не раз подчеркивал, вероятность и статистика обретают смысл, если имеешь дело с большим количеством событий, но не с отдельными событиями. Этой фундаментальной оговоркой, известной как закон больших чисел, мы обязаны Якобу Бернулли, который сформулировал ее в виде теоремы в своей книге «Ars Conjectandi» («Искусство предположений»; на рис. 38 приведен титульный лист)[95]. В переводе на обыденный язык теорема гласит, что если вероятность, что событие случится, равна p, то p – это самое вероятное соотношение количества случаев, когда это событие происходит, к общему числу попыток. Если же общее число попыток приближается к бесконечности, то доля успешных попыток становится в точности равна p. Вот как Бернулли формулирует закон больших чисел в «Искусстве предположений»: «Еще предстоит выяснить, увеличиваем ли мы при увеличении числа наблюдений и вероятность, что регистрируемое соотношение желаемых случаев к нежелательным приблизится к подлинному значению, и тогда эта вероятность в конце концов превзойдет всякую желаемую точность». Затем он пояснил это на конкретном примере[96].
Рис. 36
Рис. 37
У нас есть урна с 3000 белых и 2000 черных камешков, и мы хотим эмпирически определить соотношение количества белых и черных камешков – а мы его не знаем, – доставая из урны по одному камешку и записывая, когда нам попадается белый камешек, а когда черный (напоминаю, что при этом процессе должно соблюдаться важное требование: каждый камешек, отметив его цвет, следует положить обратно в урну и лишь затем доставать следующий, чтобы количество камешков оставалось постоянным). А теперь мы спрашиваем, возможно ли, увеличив число попыток, добиться, чтобы стало в 10, 100, 1000 раз вероятнее (а в конечном итоге прийти к «совершенной уверенности»), что соотношение количества извлечений белого камешка к количеству извлечений черного камешка приобретет точно такое же значение (3:2), что и подлинное соотношение черных и белых камешков в урне, а не какое-то другое значение? Если ответ отрицательный, то я признаю, что наша попытка оценить посредством наблюдения соотношение результатов в каждом конкретном случае (например, соотношение количества белых и черных камешков) обречена на провал. Но если это так, то мы наконец-то можем при помощи этого метода приблизиться к совершенной уверенности [в следующей главе «Искусства предположений» Якоб Бернулли доказывает, что так и есть] … и мы можем определять количество случаев a posteriori почти с той же огромной точностью, как если бы оно было известно нам a priori.
Рис. 38
Оттачиванию этой теоремы Бернулли посвятил двадцать лет, и она стала с тех пор одним из столпов статистики. В заключение он отметил, что убежден в существовании законов, которые управляют всем, – даже в тех областях, которые на первый взгляд представляются случайными.
Если бы удалось непрерывно пронаблюдать все события с этой минуты и на протяжении вечности (посредством чего вероятность превратилась бы в конечном итоге в уверенность), оказалось бы, что все в мире, даже то, что кажется нам совершенно случайным, происходит по определенным причинам и в определенном соответствии с законом, и что мы, следовательно, вынуждены предположить наличие определенной необходимости – если угодно, предопределения. Насколько я знаю, именно это имел в виду Платон, когда выдвигал доктрину вселенской цикличности и утверждал, что по истечении бесчисленных веков все вернется к первоначальному состоянию.
Мораль этой истории о науке неопределенности очень проста: можно применить математику даже к относительно «ненаучным» областям нашей жизни, в том числе и к тем, которые, как нам кажется, управляются чистой случайностью. Поэтому при попытках объяснить «непостижимую эффективность» математики мы не можем ограничиваться в дискуссии одними лишь законами физики. Рано или поздно нам все равно придется разбираться, что делает математику столь вездесущей.
Невероятное могущество математики не ускользнуло и от знаменитого драматурга и эссеиста Джорджа Бернарда Шоу (1856–1950). Несмотря на то, что прославился он отнюдь не математическими достижениями, Шоу написал очень глубокую статью о статистике и теории вероятности под названием «Напасть игры и благодать страховки» («The Vice of Gambling and the Virtue of Insurance»)[97]. В этой статье Шоу признает, что в его глазах страховка «основана на фактах, которые невозможно объяснить, и на рисках, которые способны вычислить лишь профессиональные математики». Однако далее он делает следующее проницательное замечание.
А теперь представьте себе деловую беседу между купцом, который жаждет торговать за границей, но отчаянно боится потерпеть кораблекрушение или быть сожранным дикарями, и шкипером, который жаждет заполучить грузы и пассажиров. Капитан уверяет купца, что его товары в полнейшей безопасности, как и он сам, буде он пожелает их сопровождать. Однако купец, голова у которого забита приключениями Ионы, Св. Павла, Одиссея и Робинзона Крузо, на это не отваживается. Разговор у них пойдет примерно так.
Капитан: В путь! Спорим на целую гору фунтов, что если ты поплывешь со мною, то в этот же день через год будешь жив и здоров!
Купец: Но если я приму эти условия, то должен буду поспорить с тобой на ту же сумму, что в течение года погибну.
Капитан: Почему бы и нет, если ты все равно наверняка проиграешь?
Купец: Но если я потону, то и ты потонешь, и что тогда станется с нашим спором?
Капитан: И то верно. Тогда я найду тебе какого-нибудь сухопутного жителя, который заключит этот спор с твоей женой и домочадцами.

