- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (КВ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
В. И. Григорьев.
Рис. 10 к ст. Квантовая теория поля.
Рис. 12 к ст. Квантовая теория поля.
Рис. 9 к ст. Квантовая теория поля.
Рис. 11 к ст. Квантовая теория поля.
Рис. 8 к ст. Квантовая теория поля.
Рис. 6 к ст. Квантовая теория поля.
Рис. 4 (слева) и рис. 5 (справа) к ст. Квантовая теория поля.
Рис. 7 к ст. Квантовая теория поля.
Рис. 3 к ст. Квантовая теория поля.
Рис. 2 к ст. Квантовая теория поля.
Рис. 1 к ст. Квантовая теория поля.
Квантовая химия
Ква'нтовая хи'мия, область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические связи рассматриваются на основе представлений и методов квантовой механики. Квантовая механика в принципе позволяет рассчитывать свойства атомно-молекулярных систем, исходя только из Шрёдингера уровнения, Паули принципа и универсальных физических постоянных. Различные физические характеристики молекулы (энергия, электрические и магнитные дипольные моменты и др.) могут быть получены как собственные значения операторов соответствующих величин, если известен точный вид волновой функции. Однако для систем, содержащих 2 и более электронов, пока не удалось получить точного аналитического решения уравнения Шрёдингера. Если же использовать функции с очень большим числом переменных, то можно получить приближённое решение, по числовой точности аппроксимирующее сколь угодно точно идеальное решение, Тем не менее, несмотря на использование современных ЭВМ с быстродействием порядка сотен тысяч и даже миллионов операций в секунду, подобные «прямые» решения уравнения Шрёдингера пока что осуществлены только для систем с несколькими электронами, например молекул H2 и LiH. Поскольку химиков интересуют системы с десятками и сотнями электронов, приходится идти на упрощения. Поэтому для описания таких систем были выдвинуты различные приближённые квантовохимические теории, более или менее удовлетворительные в зависимости от характера рассматриваемых задач: теория валентных связей, заложенная в 1927 В. Гейтлером и Ф. Лондоном в Германии, а в начале 30-х гг. развитая Дж. Слейтером и Л. Полингом в США; кристаллического поля теория, предложенная немецким учёным Х. Бете в 1929 и в последующие годы разрабатывавшаяся американским учёным Ван Флеком (своё применение в химии она получила в 1950-е гг. как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена). В конце 1920-х гг. появилась теория молекулярных орбиталей (МО), разработанная Дж. Леннардом-Джонсом (Великобритания), Р. Малликеном (США), Ф. Хундом (Германия) и развивавшаяся затем многими др. исследователями (см. Молекулярных орбиталей метод). Долгое время эти приближённые теории сосуществовали и даже дополняли друг друга. Однако теперь, когда достигнуты огромные успехи в синтезе молекул и определении их структуры, а вычислительная техника получила широкое развитие, симпатии исследователей склонились в сторону теории МО. Это объясняется тем что только теория МО выработала универсальный язык, в принципе пригодный для описания любых молекул, строение которых отличается очень большим разнообразием и сложностью. Теория МО включает наиболее общие физические представления об электронном строении молекул и (что не менее важно) использует математический аппарат, наиболее пригодный для проведения количественных расчётов на ЭВМ.
Теория МО исходит из того, что каждый электрон молекулы находится в поле всех ее атомных ядер и остальных электронов. Теория атомных орбиталей (АО), описывающая электронное строение атомов, включается в теорию МО как частный случай, когда в системе имеется только одно атомное ядро. Далее, теория МО рассматривает все химические связи как многоцентровые (по числу атомных ядер в молекуле) и тем самым полностью делокализованные. С этой точки зрения всякого рода преимущественная локализация электронной плотности около определённой части атомных ядер есть приближение, обоснованность которого должна быть выяснена в каждом конкретном случае. Представления В. Косселя о возникновении в химических соединениях обособленных ионов (изоэлектронных атомам благородных газов) или воззрения Дж. Льюиса (США) об образовании двухцентровых двухэлектронных химических связей (выражаемых символикой валентного штриха) естественно включаются в теорию МО как некоторые частные случаи.
В основе теории МО лежит одноэлектронное приближение, при котором каждый электрон считается квазинезависимой частицей и описывается своей волновой функцией. Обычно вводится и др. приближение — одноэлектронные МО получаются как линейные комбинации АО (приближение ЛКАО — МО).
Если принять указанные приближения, то, используя только универсальные физические постоянные и не вводя никаких экспериментальных данных (разве только равновесные межъядерные расстояния, причём в последнее время всё чаще обходятся и без них), можно проводить чисто теоретические расчёты (расчёты ab initio, лат. «от начала») по схеме метода самосогласованного поля (ССП; метода Хартри — Фока). Такие расчёты ССП — ЛКАО — МО сейчас стали возможны уже для систем, содержащих несколько десятков электронов. Здесь основные трудности заключаются в том, что приходится вычислять громадное количество интегралов. Хотя подобные расчёты являются громоздкими и дорогостоящими, получающиеся результаты не всегда удовлетворительны, во всяком случае, с количественной стороны. Это объясняется тем, что, несмотря на различные усовершенствования схемы ССП (например, введение конфигурационного взаимодействия и др. способов учёта корреляции электронов), исследователи в конечном счёте ограничены возможностями одноэлектронного приближения ЛКАО — МО.
В связи с этим большое развитие получили полуэмпирические квантовохимические расчёты. Эти расчёты также восходят к уравнению Шрёдингера, но вместо того чтобы вычислять огромное количество (миллионы) интегралов, большую часть из них опускают (руководствуясь порядком их малости), а остальные упрощают. Потерю точности компенсируют соответствующей калибровкой параметров, которые берутся из эксперимента. Полуэмпирические расчёты пользуются большой популярностью, ибо оптимальным образом сочетают в себе простоту и точность в решении различных проблем.
Описанные выше расчёты нельзя непосредственно сравнивать с чисто теоретическими (неэмпирическими) расчётами, так как у них разные возможности, а отсюда и разные задачи. Ввиду специфики используемых параметров при полуэмпирическом подходе нельзя надеяться получить волновую функцию, удовлетворительно описывающую различные (а тем более все) одноэлектронные свойства. В этом состоит коренное отличие полуэмпирических расчётов от расчётов неэмпирических, которые могут, хотя бы в принципе, привести к универсальной волновой функции. Поэтому сила и привлекательность полуэмпирических расчётов заключаются не в получении количественной информации как таковой, а в возможности интерпретации получаемых результатов в терминах физико-химических концепций. Только такая интерпретация и приводит к действительному пониманию, так как без неё на основании расчёта можно лишь констатировать те или иные количественные характеристики явлений (которые надёжнее определить на опыте). Именно в этой специфической особенности полуэмпирических расчётов и заключается их непреходящая ценность, позволяющая им выдерживать конкуренцию с полными неэмпирическими расчётами, которые по мере развития вычислительной техники становятся всё более легко осуществимыми.
Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.

