- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Основы кибернетики предприятия - Джей Форрестер
Шрифт:
Интервал:
Закладка:
Ниже показана цепь из двух вспомогательных уравнений между двумя уровнями и уравнением темпа:
,
6-3, Aгде RSR — уровень, a AIR — константа,
,
6–4, Агде IAR — уровень, a DHR и DUR — константы,
,
6-5, Rгде UOR — уровень.
Следует заметить, что в уравнении 6–3, А (индекс «A» применяется в шифре вспомогательных уравнений) уровень RSR в момент времени К используется в качестве ввода для вспомогательной переменной IDR в момент времени К-Выражения AIR, DHR и DUR — константы. В тот же момент времени К, IDR является вместе с другим уровнем вводом для вспомогательной переменной DFR. В свою очередь DFR используется вместе с другим уровнем в уравнении темпа 6–5,R для определения темпа SSR.
Отметим, что уравнение 6–3 может быть подставлено в уравнение 6–4 и далее в уравнение 6–5; тогда получим:
.
6-6, RТаким образом, могут быть исключены вспомогательные уравнения, а темп выражен только через уровни и константы.
В главе 13 уравнения 6–3, 6–4 и 6–5 рассматриваются применительно к обстановке на промышленном предприятии. Каждое из этих вспомогательных уравнений определяет имеющую самостоятельный смысл переменную, важную для отражения системы. Наши представления о системе были бы безнадежно затемнены, если бы мы действительно производили подстановку, выполненную в уравнении 6–6.
Вспомогательная переменная в принципе зависит только от уже известных уровней и от других вспомогательных переменных, значения которых могут быть вычислены до того, как они понадобятся. Как отмечалось в отношении уравнений темпов, значения темпов, относящиеся к предшествующему интервалу времени JK, могут быть иногда использованы во вспомогательных уравнениях; хотя это, строго говоря, неверно, однако при определенных условиях такой метод может дать достаточно хорошее приближение к средним значениям, получаемым для коротких интервалов времени.
Дополнительные уравнения. Дополнительные уравнения применяются при определении переменных, не являющихся частью структуры модели, но используемых при печати и графическом изображении величин, представляющих интерес для понимания поведения модели. Мы можем пожелать собрать информацию (например, о сумме запасов в целой системе), которая не используется в процессе выработки какого-либо решения в модели. Обозначение «S» указывает на дополнительное уравнение.
Уравнения начальных условий. Уравнения начальных условий используются для определения исходных значений всех уровней (и некоторых темпов), которое должно быть произведено до начала первого цикла решения уравнений. Они также используются в начальный момент времени для вычисления значений одних констант, исходя из значений других. Уравнения начальных условий решаются только один раз перед началом каждого проигрывания модели. Обозначение «N» указывает на уравнение начальных условий.
6. 5. Интервал решений
Интервал решений должен быть достаточно коротким, чтобы его величина не влияла сколько-нибудь серьезно на результаты вычислений. Его следует выбирать по возможности максимально большим с тем, чтобы не допускать увеличения загрузки вычислительной машины там, где это не вызвано необходимостью.
Основное требование ограничения продолжительности интервала вытекает из характера построения системы уравнений. Уровни определяют темпы, а темпы определяют уровни, но система уравнений является «открытой»; под этим подразумевается, что каналы обратной связи остаются в течение интервала решений DT закрытыми. Поэтому интервал должен быть достаточно коротким, чтобы изменения в уровнях между моментами решений не привели к недопустимой дискретности темпов.
В большинстве наших систем допустимый интервал между вычислениями будет определяться запаздываниями, имеющими форму показательной функции (см. главу 8). Как мы увидим, интервал обязательно должен быть меньше продолжительности любого запаздывания первого порядка; желательно, чтобы он был меньше его половины. Поскольку запаздывания третьего порядка наиболее употребительны и поскольку они эквивалентны трем последовательным запаздываниям первого порядка, каждое из которых составляет одну треть запаздывания третьего порядка, интервал решений должен быть меньше одной шестой общей продолжительности самого короткого запаздывания третьего порядка в рассматриваемой системе.
Сформулированное правило является эмпирическим. Наилучший способ проверки правильности выбора интервала решений состоит в варьировании его величины и наблюдении за влиянием ее на результаты вычислений.
Особым критерием, определяющим максимально допустимую величину интервала решений, является взаимосвязь между значениями уровней и темпами потоков, входящих в эти уровни и исходящих из них. Интервал решений должен быть достаточно коротким, чтобы суммарный входящий или исходящий поток не вызывал больших изменений в содержании уровня за один интервал решений. Например, если возможен высокий темп исходящего потока при небольшой величине содержимого в уровне, то интервал решений должен быть достаточно коротким с тем, чтобы только часть содержимого уровня могла быть исчерпана за один интервал решений. Если интервал настолько велик, что на его протяжении из уровня может быть изъято содержимое в большем количестве, чем имелось в нем в начале интервала, то в конце интервала содержимое уровня будет выражаться отрицательной величиной, что не имеет смысла.
Есть другое, более существенное соображение, которое теоретически влияет на величину интервала решений. Теория проб, описывающая прерывистые потоки в системах с обратной связью, устанавливает определенную зависимость между величиной интервала проб (в данном случае — интервала решений) и такими, представляющими интерес для понимания системы характеристиками, как «поле допуска». (Оно показывает, насколько велики могут быть колебания в действиях системы.) Интервал решений должен быть существенно короче периода колебаний тех компонентов системы, которые отличаются наиболее короткой периодичностью, определяемой путем вычислений. Можно полагать, что применение приведенного выше эмпирического правила всегда будет приводить к интервалу, достаточно короткому, чтобы можно было точно отобразить отдельные компоненты, и что этот интервал будет меньше максимально допустимого, исходя из характеристик системы в целом.

