Концепции современного естествознания - Коллектив Авторов
Шрифт:
Интервал:
Закладка:
На основании проведенных исследований сделаны выводы о строении Солнца. Полагают, что Солнце состоит из нескольких слоев – внутренних и внешних. К внутренним слоям относятся ядро, область лучистого переноса энергии и конвективная зона. Внешние слои образует атмосфера.
Ядро находится в центре Солнца. Его радиус составляет 1/3 солнечного радиуса. В ядре сосредоточена большая часть вещества Солнца. Температура вещества в центре Солнца превышает 10 млн К. В условиях сверхдавления и сверхвысокой температуры вещество ядра ионизировано, то есть представляет собой плазму. Частицы плазмы находятся в постоянном движении, скорость которого огромна. Поэтому между частицами непрерывно происходят ядерные реакции, в результате которых из атомов водорода образуются атомы гелия и выделяется большое количество энергии. Например:
1Н2 + 1Н1 = 2Не3
22Не3 = 2Не4 + 21Н1 + энергия.
Водородные ядерные реакции – источник солнечной энергии. За время своего существования Солнце не израсходовало еще и половины запасов водородного ядерного топлива. В течение почти всего этого времени излучение Солнца почти такое же, как и теперь. Так оно и будет светить миллиарды лет, пока в недрах Солнца весь водород не превратится в гелий.
Область лучистого переноса энергии следует за ядром. Полагают, что ее толщина примерно равна радиусу ядра. Здесь в результате поглощения квантов, их дробления и переизлучения энергия переносится наружу.
Выше находится конвективная зона толщиной примерно 200 тыс. км. Температура в конвективной зоне уже значительно ниже. Конвективная зона не может полностью передать огромное количество энергии, поэтому систематически ядерное вещество прорывается в наружные слои таким образом, что конвекция на Солнце напоминает кипение воды. Эта зона переходит во внешние слои Солнца – атмосферу. Солнечная атмосфера также состоит из нескольких слоев: фотосферы, хромосферы и короны.
Фотосфера – самый глубокий и тонкий слой атмосферы. Здесь возникает подавляющее количество световых и тепловых лучей, посылаемых в пространство. Толщина фотосферы 200–300 км, ее температура оценивается в 6000 К. За фотосферой следует хромосфера – слой раскаленных газов толщиной 10–20 тыс. км. Поскольку в верхних слоях солнечной атмосферы световая энергия в значительной степени переходит в тепловую, температура хромосферы значительно выше температуры фотосферы и оценивается в десятки тысяч кельвинов.
Корона – внешняя часть атмосферы Солнца. Температура в этой части Солнца – более 1 млн К. В короне плазма очень сильно разрежена, плотность ее в миллиарды раз меньше плотности воздуха. Поэтому корона еще прозрачнее, чем хромосфера, и количество излучаемого ею света очень мало. Яркость короны в миллионы раз меньше яркости фотосферы. Температура по мере удаления от поверхности Солнца уменьшается.
Солнечная корона имеет огромные размеры – более 200 радиусов Солнца – и достигает орбиты Марса. Таким образом, Земля оказывается, образно говоря, погруженной в солнечную корону. В этой связи на Землю постоянно воздействует так называемый солнечный ветер – поток заряженных частиц, испускаемых Солнцем. При соприкосновении с атмосферой Земли он отклоняется верхними ее слоями – ионосферой. Xотя внешние слои солнечной атмосферы имеют температуру более 1 млн К, их излучение составляет ничтожную долю от общей энергии, испускаемой Солнцем. Почти вся энергия исходит от фотосферы, имеющей температуру около 6000 К.
Изучение температуры в различных частях Солнца производится радиоастрономическими методами. Установлено, что чем выше температура тела, тем более интенсивно оно излучает радиоволны. Доходящее до нас радиоизлучение Солнца возникает не в фотосфере, а в его короне.
Периодически, с циклом в среднем около 11 лет, в солнечной атмосфере появляются активные области, число которых регулярно меняется. О возникновении активной области свидетельствуют солнечные пятна, наблюдаемые в фотосфере. Температура пятна примерно на 1000 К ниже температуры окружающей фотосферы. В активной области часто наблюдаются вспышки, яркость которых высока. В результате вспышек образуются направленные потоки очень быстрых заряженных частиц и космических лучей. Достигая Земли, этот поток вызывает заметные неправильные изменения магнитного поля Земли – так называемые магнитные бури. Причина периодичности солнечной активности пока неясна. Предполагают, что строение Солнца и процессы, происходящие в нем, могут быть типичными и для многих других звезд.
6.4. Солнечная система
В настоящее время проблема происхождения Солнечной системы остается открытой.
Гипотезы ее возникновения следующие:
♦ Планеты Солнечной системы сформировались путем объединения твердых, холодных тел и частиц, входящих в состав туманности, которая когда-то окружала Солнце.
♦ Спутники планет образовались из роя частиц, окружавших планеты.
Орбиты всех планет являются почти круговыми и лежат в одной плоскости, совпадающей с экваториальной плоскостью Солнца. Общая масса всех планет Солнечной системы составляет всего 2 % от массы Солнца.
Теории происхождения Солнечной системы
Небулярная гипотеза Канта—Лапласа. Согласно естественнонаучным взглядам философа И. Канта, орбитальное движение планет возникло «после нецентрального удара частиц как механизма возникновения первичной туманности» (ошибочное предположение, так как движение могло начаться только при косом ударе туманностей). Он считал причинами, противодействующими стремлению к «равновесию», химические процессы внутри Земли, которые зависят от космических сил и проявляются в виде землетрясений и вулканической деятельности (1755 г.).
П. Лаплас – французский ученый-физик, разделяя взгляды Канта в этот же период, исходил из предположения о горячей медленно вращающейся туманности, которая по мере охлаждения сжималась. По закону сохранения момента импульса, при этом росла скорость вращения, и центробежные силы отрывали от нее кольца. Материя в этих кольцах сжималась под действием тяготения, формируя компактные тела.
Приливная, или планетозимальная, гипотеза. В XX в. американские астрофизики Т. Чемберлен и Ф. Мультон рассмотрели идею встречи Солнца со звездой, вызвавшей приливной выброс солнечного вещества (1906 г.), из которого и образовались планеты.
С. Аррениус – американский астрофизик, допустил и прямое столкновение Солнца со звездой (1913 г.). Предполагается, что в результате появилось некое волокно, распавшееся при вращении на части – основу планет.
Еще один американский астрофизик – Дж. Джинс – предположил (1916 г.), что какая-то звезда прошла неподалеку от Солнца и вызвала «приливные выступы», принявшие форму газовых струй, из которых и возникли планеты.
Гипотеза захвата Солнцем межзвездного газа. Ее предположил шведский астрофизик X. Альфен (1942 г.). Атомы газа ионизировались при падении на Солнце и стали двигаться по орбитам в его магнитном поле, поступая в определенные участки экваториальной плоскости.
Академик-астрофизик В. Г. Фесенков (1944 г.) предположил, что образование планет связано с переходом от одного типа ядерных реакций в глубинах Солнца к другому.
Астроном и математик Дж. Дарвин и математик А. М. Ляпунов (40-е г. XX в.) рассчитали независимо друг от друга фигуры равновесия вращающейся жидкой несжимаемой массы.
Согласно взглядам О. Струве – английского астрофизика (40-е гг. XX в.), быстро вращающиеся звезды могут выбрасывать вещество в плоскости своих экваторов. В результате этого образуются газовые кольца и оболочки, а звезда теряет массу и момент количества движения.
Кометная гипотеза происхождения планет Солнечной системы. Эту популярную ныне гипотезу предложил А. А. Маркушевич (1992 г.). Сводится она к следующему. В газопылевой туманности, имеющей вид дискообразного вращающегося облака и состоящей из мелких пылевидных железосиликатных частиц и газов – воды и водорода, при понижении температуры газы намерзали на пылинки, увеличивая их размер. Возникал состав, свойственный составу комет. Частицы сталкивались между собой, большие по объему концентрировались в центре туманности, а меньшие оттеснялись на периферию, дав начало планетам. Шло укрепление и разрастание образующихся тел – астероидов, комет, планет. При образовании планет происходила аккреция (стяжение кометной массы), выделялась теплота, которая разогревала центр сгустка до расплавленного состояния и расслаивала водородную оболочку и железосиликатное ядро, которое позже расслоилось на железоникелевое ядро и силикатную оболочку, не позволявшую рассеиваться теплоте в космическом пространстве. Так планеты приобрели почти сферическую форму. По своим физическим характеристикам планеты Солнечной системы делятся на две группы: планеты земной группы и газовые (или планеты-гиганты).