Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Математика » Великая Теорема Ферма - Саймон Сингх

Великая Теорема Ферма - Саймон Сингх

Читать онлайн Великая Теорема Ферма - Саймон Сингх

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 27 28 29 30 31 32 33 34 35 ... 70
Перейти на страницу:

Иначе говоря, четное значение параметра беспорядка — свойство всех расположении, получаемых из исходного правильного расположения. В математике свойство, которое сохраняется независимо от того, какие действия производятся над объектом, называется инвариантом.

Но если вы проанализируете расположение шашек в головоломке Лойда «15–14», то обнаружите, что значение параметра беспорядка для нее равно единице: Dp = 1, так как только у одной пары с номерами 13 и 15 номера идут в обратном порядке. В головоломке Лойда параметр беспорядка имеет нечетное значение! Но мы знаем, что у любого расположения, полученного из правильного исходного расположения, значение параметра порядка четно. Отсюда следует заключение: расположение шашек в головоломке Лойда «15–14» не может быть получено из правильного исходного расположения, и наоборот, расположение шашек в головоломке Лойда не может быть сведено к правильному расположению. За премию в 1000 долларов Лойд мог быть абсолютно спокоен!

Головоломка Лойда и параметр беспорядка убедительно демонстрируют силу инварианта. Инварианты дают математикам важную стратегию, когда требуется доказать, что один объект невозможно преобразовать в другой. Например, в настоящее время большой интерес вызывает изучение узлов, и специалисты по теории узлов, естественно, пытаются выяснить, можно или нет преобразовать один узел в другой, изгибая и образуя петли, но не разрезая его. Чтобы ответить на этот вопрос, они пытаются найти какое-нибудь свойство исходного узла, которое сохранялось бы при любом изгибании и образовании петель, т. е. инвариант узла. Затем они вычисляют такой же инвариант для второго узла. Если значения инвариантов оказываются различными, то из этого с необходимостью следует вывод о том, что первый узел невозможно преобразовать во второй.

До того, как первые шаги в этом направлении были сделаны Куртом Рейдемейстером в 20-х годах XX века, доказать, что один узел не может быть преобразован в другой, было невозможно. Иначе говоря, до открытия инвариантов узлов было невозможно доказать, что узел «бантиком» невозможно преобразовать в рифовый узел, простой узел или даже простую петлю без какого бы то ни было узла вообще.

Понятие инвариантного свойства занимает центральное место во многих других математических доказательствах, и, как мы увидим в гл. 5, оно сыграло решающую роль в возвращении Великой теоремы Ферма в главное русло развития современной математической мысли.

На стыке XIX и XX веков, благодаря поклонникам Сэма Лойда и его головоломки «15–14», миллионы любителей решать головоломки в Европе и Америке жаждали новых трудных задач. Когда весть о наследстве Вольфскеля дошла до этих начинающих математиков, великая теорема Ферма снова стала самой знаменитой математической проблемой в мире. Великая теорема Ферма была бесконечно более сложной, чем самая трудная из головоломок Лойда, но и приз был несравненно больше.

Любители мечтали о том, что им, возможно, удастся найти сравнительно простой трюк, который ускользнул от внимания великих математиков прошлого. Когда речь заходила о знании математических приемов и методов, преисполненный рвением любитель, живущий в XX веке, во многом не уступал Пьеру де Ферма. Трудность была в другом — в отсутствии изобретательности, с которой Ферма пользовался известными ему приемами и методами.

Через несколько недель после объявления конкурса на соискание премии Вольфскеля на Гёттингенский университет обрушилась лавина «доказательств». Не удивительно, что все они до одного оказались ошибочными. И хотя каждый из участников конкурса был убежден, что именно ему удалось решить проблему, пережившую столетия, но во всех присланных доказательствах неизбежно была какая-нибудь тонкая, а иногда и не очень тонкая — ошибка. Искусство теории чисел настолько абстрактно, что необычайно легко сойти с верного логического пути и незаметно заблудиться, даже впасть в абсурд. В Приложении 7 показана классическая ошибка такого сорта, которую легко может допустить энтузиаст-любитель.

Независимо от того, кто был отправителем того или иного доказательства, каждое из них скрупулезно изучалось на тот случай, если неизвестному любителю все же удастся найти столь давно разыскиваемое доказательство. Деканом математического факультета Гёттингенского университета с 1909 по 1934 годы был профессор Эдмунд Ландау. Именно на него легла обязанность разбирать все доказательства, присланные на соискание премии Вольфскеля.

Ландау был вынужден то и дело прерывать свои собственные исследования, поскольку ему нужно было разбирать десятки ошибочных доказательств, поступавших к нему на стол каждый месяц. Чтобы справиться с ситуацией, профессор Ландау изобрел изящный метод, позволивший избавиться от докучливой работы. Профессор попросил напечатать несколько сотен карточек, на которых значилось:

Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр … в строке … Из-за нее все доказательство утрачивает силу.

Профессор Э.М. Ландау

 Каждое из полученных доказательств вместе с отпечатанной карточкой Ландау вручал одному из своих студентов и просил его заполнить пробелы.

Доказательства продолжали поступать непрерывным потоком в течение нескольких лет даже после того, как премия Вольфскеля катастрофически обесценилась из-за гиперинфляции после первой мировой войны. Говорят, что тот, кто выиграл бы конкурс сегодня, вряд ли смог бы купить на премию чашку кофе, — но такие утверждения несколько преувеличены. Как пояснил д-р Ф. Шлихтинг, ответственный за рассмотрение доказательств в 70-х годах, премия Вольфскеля ныне составляет более 10000 марок. Уникальная возможность составить представление о работе Комиссии Вольфскеля дает письмо д-ра Ф. Шлихтинга Паулю Рибенбойму, приведенное в книге Ф. Шлихтинга «Тринадцать лекций о Великой теореме Ферма».

«Уважаемый сэр!

Общее число представленных к настоящему времени «решений» неизвестно. В первый год (1907–1908 гг.) в анналах Академии было зарегистрировано 621 решение. В настоящее время в Академии хранятся стопка бумаг, толщиной около трех метров, с материалами переписки по проблеме Ферма. В последние десятилетия работа с письмами производилась следующим образом. Секретарь Академии делил поступающие рукописи по следующим категориям: 1) полная чепуха, которая немедленно отсылалась обратно; 2) материал, который по крайней мере внешне походил на математику.

Вторая часть корреспонденции передавалась математическому факультету, где работа по прочтению рукописей, нахождению ошибок и ответу авторам поручалась одному из ассистентов (в немецких университетах это люди, окончившие полный курс университета и работающие над диссертацией на соискание ученой степени «доктора философии» — Ph.D.). Сейчас очередная жертва — это я. Каждый месяц поступают 3–4 письма, на которые я должен отвечать. В этих письмах масса интересного и любопытного материала. Например, один из корреспондентов прислал половину доказательства и пообещал прислать вторую, если мы выплатим 1000 марок авансом. Другой корреспондент пообещал мне 1% от своих доходов от своих публикаций, интервью на радио и телевидении, когда он станет знаменитым, если только я окажу ему сейчас поддержку. В противном случае он угрожал послать свое доказательство в адрес математического факультета какого-нибудь российского университета и тем самым лишить нас славы его открывателей. Время от времени кто-нибудь из авторов «доказательств» наведывается в Гёттинген и настаивает на личной встрече и обсуждении.

Почти все «доказательства» написаны на самом элементарном уровне (и используют обозначения, заимствованные из высшей математики и, быть может, некоторых плохо усвоенных работ по теории чисел). Тем не менее понять их очень трудно. В социальном плане отправители нередко оказываются людьми с техническим образованием, но с несложившейся карьерой, которые пытаются теперь достичь успеха с помощью доказательства Великой теоремы Ферма. Некоторые рукописи я передал психиатрам, и те диагностировали тяжелую шизофрению.

Одно из условий в завещании Вольфскеля состояло в том, что Академия была должна ежегодно печатать извещение о конкурсе на соискание премии в главных математических журналах. Но уже через несколько первых лет журналы отказались печатать уведомление о конкурсе потому, что редакции оказались заваленными письмами и сумасшедшими рукописями. Надеюсь, что эта информация представит для Вас некоторый интерес.

Искренне Ваш Ф. Шлихтинг»

 Как упоминает д-р Шлихтинг, участники конкурса не ограничивались тем, что присылали свои «доказательства» в Академию. Вряд ли во всем мире найдется хотя бы один математический факультет, где бы ни стоял шкаф, набитый поступившими от любителей «доказательствами». Большинство университетов попросту оставляет такие любительские доказательства без внимания и ответа, но некоторые университеты прибегали к более изобретательным способам, позволявшим отделаться от назойливых корреспондентов.[9] Известный американский популяризатор науки Мартин Гарднер вспоминает об одном своем знакомом, имевшим обыкновение возвращать пришедшие в его адрес рукописи с запиской, в которой извещал отправителя, что недостаточно компетентен для того, чтобы вникнуть в детали доказательства, и сообщал имя и адрес эксперта, который мог бы разобраться в деталях доказательства, т. е. по существу предлагал любителю обратиться к несчастному эксперту. Другой приятель Мартина Гарднера отвечал авторам присланных доказательств так: «У меня есть замечательное опровержение присланного Вами доказательства, но, к сожалению, эта страница недостаточно велика, чтобы вместить его».

1 ... 27 28 29 30 31 32 33 34 35 ... 70
Перейти на страницу:
На этой странице вы можете бесплатно скачать Великая Теорема Ферма - Саймон Сингх торрент бесплатно.
Комментарии