Огонь! Об оружии и боеприпасах - Александр Прищепенко
Шрифт:
Интервал:
Закладка:
Но и нейтроны при перехвате боевого блока и ЭМИ противоборствуют с бездушными машинами, а где же пресловутое варварство? Вполне может ядерное оружие представить и «фильм ужасов» извращенным любителям этого жанра. И изумляли непомерным слюноотделением газетенки, заливаясь в брехе об изуверских «нейтронных бомбах» — мародерском оружии, предназначенном якобы для уничтожения людей, но сохранения материальных ценностей для последующего разграбления.
Двухфазными термоядерными зарядами (по американской терминологии — «боеприпасами с повышенным выходом радиации») оснащались боевые части ракет «Лэнс» и 203-мм гаубичные снаряды.
Предметы, подвергшиеся воздействию значительных нейтронных потоков (основного поражающего фактора двухфазных боеприпасов) опасны для жизни, потому что нейтроны после взаимодействия с ядрами инициируют в них разнообразные реакции, являющиеся причиной вторичного (наведенного) излучения, которое испускается в течение длительного времени после того, как распадется последний из облучавших вещество нейтронов.
На самом деле, ампульные боеприпасы предназначались для поражения бронетехники, по численности которой Варшавский пакт превосходил НАТО в несколько раз. Выбор носителей и их досягаемость (десятки километров) указывали, что создавалось это оружие для решения оперативно-тактических задач.
Прочная конструкция танка достаточно стойка к воздействию ударной волны, поэтому после расчетов применения ядерного оружия различных классов против бронетехники, с учетом последствий заражения местности продуктами деления и разрушений от мощных ударных волн, основным поражающим фактором решили сделать нейтроны.
Рассчитывая остановить навал «брони», в штабах НАТО разработали концепцию «борьбы со вторыми эшелонами», стараясь отнести подальше рубеж применения нейтронного оружия по противнику. Основной задачей бронетанковых войск является развитие успеха на оперативную глубину, после того, как их бросят в брешь в обороне, «пробитую», например, ядерным ударом большой мощности. В этот момент применять радиационные боеприпасы уже поздновато: хотя 14-МэВные нейтроны — продукт термоядерных реакций — незначительно поглощаются броней, но, как уже знает читатель, радиационные поражения экипажей сказываются на их боеспособности не сразу. Поэтому радиационные удары планировались по выжидательным районам, где изготавливались к введению в прорыв основные массы бронетехники: за время марша к линии фронта на ее экипажах должны были проявиться последствия облучения.
В предназначенных для борьбы с танками двухфазных боеприпасах была предусмотрена замена ампул с существенно уменьшившимся количеством трития на «свежие», производимая в арсеналах в процессе хранения. Могли такие боеприпасы применяться и с «холостыми» ампулами — как однофазные ядерные снаряды килотонной мощности.
…Читатель наверняка заметил, что все описанные варианты характеризуются практически изотропным полем поражения: и ударная волна и гамма кванты и нейтроны летят во всех направлениях от взрыва.
…Но натурам утонченным претило такое неизящество: как это — дубиной — и хрясь, чтоб все — в разные стороны? Нет, сделайте нам красиво, как в синематографе: чтоб неуловимые выпады шпажкой — шир-шир-шир — и улеглись вокруг поверженные враги лепестками ромашки! Ну если нельзя пока шпажкой, то — хоть мечом, волшебным Эскалибуром[34]…
…Атомы могут находиться в различных энергетических состояниях. При переходе из возбужденного состояния в основное атом испускает квант света. Благодаря этому явлению мы видим пламя — и костра и факела ракетного двигателя. Кроме самопроизвольных переходов с одного энергетического уровня на другой, могут произойти и вынужденные, обусловленные действием на атом падающего на него излучения. Самопроизвольные переходы могут осуществляться только в одном направлении — с более высоких уровней на более низкие. Вынужденные переходы могут происходить как в одном, так и в другом направлении. В случае перехода на более высокий уровень атом поглощает падающее на него излучение. При вынужденном переходе с одного из возбужденных уровней на более низкий энергетический уровень происходит излучение атомом фотона, дополнительного к тому фотону, под действием которого произошел переход. Это дополнительное излучение называется вынужденным (или индуцированным).
Вынужденное излучение обладает весьма важными свойствами. По частоте, фазе и поляризации оно совпадает с таковыми излучения вызвавшего переход: вынужденное и внешнее излучения когерентны. Эта особенность вынужденного излучения лежит в основе действия усилителей и генераторов света, называемых лазерами.
Эйнштейн в 1917 году показал, что соотношение между вероятностями спонтанного и индуцированного излучения пропорционально длине волны. Выход лучистой энергии ядерного взрыва реализуется в основном в рентгеновской части электромагнитного спектра. Для таких коротких воли требуемая энергия накачки очень высока, но у ядерного взрыва ее много!
Рентгеновские лазеры — импульсные, с малой длительностью генерации. При огромной плотности энергии активная среда лазера может быть только плазмой, причем полностью ионизованной.
Когда плазма ядерного взрыва начинает охлаждаться, быстрее других частиц охлаждаются электроны. После достаточного понижения температуры электронов, начинается процесс рекомбинации. Для некоторых уровней при этом и реализуются индуцированные переходы.
Плотность электронов не должна быть слишком высокой, чтобы обеспечить условия инверсной населенности. Дело в том, что с увеличением энергии состояния населенность уровня — количество атомов в этом состоянии — уменьшается. Число переходов между двумя уровнями пропорционально населенности исходного уровня. В системе атомов, находящейся в термодинамическом равновесии, поглощение волны накачки может и преобладать над вынужденным излучением, так что волна накачки при прохождении через вещество ослабляется. Для усиления же нужно, чтобы в состоянии с большей энергией находилось большее число атомов, чем в состоянии с меньшей энергией. В этом случае говорят, что данная совокупность атомов имеет инверсную населенность. Такое возможно для атомов таких элементов, как железо, цинк, медь.
Если активная среда — пусть это будет стержень — представляет твердое тело, то за короткое время накачки ее форма практически не изменится. Образовавшаяся плазма расширяет со скоростью 50 км/с. Если начальный радиус стержня — доли миллиметра, то потребуется около 30 наносекунд, чтобы создались условия для возникновения индуцированного излучения, которое длится не более наносекунды. За это время диаметр расширяющегося стержня превысит миллиметр.
(adsbygoogle = window.adsbygoogle || []).push({});