- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ИЗ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
А. А. Имшенецкий.
Рис. 6. Сезонная изменчивость у бабочки пестрокрыльницы; слева — весенняя форма, справа — летняя.
Рис. 4. Ненаследственная изменчивость величины клеток у инфузорий: вариация размеров в каждом из последующих клонов не зависит от размера исходной особи.
Рис. 5. Географическая изменчивость формы листа у растений ветреницы из различных районов Европы.
Рис. 1a. Черная адаптивная окраска у мышей Perognathus, живущих на чёрной лаве.
Рис. 2. Наследственная изменчивость форм роста у капусты: 1 — дикая однолетняя; 2 — лиственная; 3 — савойская; 4 — кормовая; 5 — брюссельская; 6 — брокколи; 7 — кольраби; 8 — цветная; 9 — кочанная.
Рис. 3. Наследственная изменчивость формы гребня у петухов: А — гороховидный; Б — розовидный; В — листовидный; Г — ореховидный.
Рис. 1б. Белая адаптивная окраска у мышей Perognathus, живущих на песках.
Измерение
Измере'ние, операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины.
И. — одна из древнейших операций, применявшаяся человеком в практической деятельности (при распределении земельных участков, в строительном деле, при ирригационных работах и т. д.); современная хозяйственно-экономическая и общественная жизнь немыслима без И.
Для точных наук характерна органическая связь наблюдений и эксперимента с определением численных значений характеристик исследуемых объектов и процессов. Д. И. Менделеев не раз подчёркивал, что наука начинается с тех пор, как начинают измерять.
Законченное И. включает следующие элементы: объект И., свойство или состояние которого характеризует измеряемая величина; единицу И.; технические средства И., проградуированные в выбранных единицах; метод И.; наблюдателя или регистрирующее устройство, воспринимающее результат И.; окончательный результат И.
Простейшим и исторически первым известным видом И. является прямое И., при котором результат получается непосредственно из И. самой величины (например, И. длины проградуированной линейкой, И. массы тела при помощи гирь и т. д.). Однако прямые И. не всегда возможны. В этих случаях прибегают к косвенным И., основанным на известной зависимости между искомой величиной и непосредственно измеряемыми величинами.
Установленные наукой связи и количественные отношения между различными по своей природе физическими явлениями позволили создать самосогласованную систему единиц, применяемую во всех областях И. (см. Международная система единиц ).
И. следует отличать от других приёмов количественной характеристики величин, применяемых в тех случаях, когда нет однозначного соответствия между величиной и её количественным выражением в определённых единицах. Так, визуальное определение скорости ветра по Бофорта шкале или твёрдости минералов по Мооса шкале следует считать не И., а оценкой .
Всякое И. неизбежно связано с погрешностями измерений. Погрешности, порожденные несовершенством метода И., неточной градуировкой и неправильной установкой измерительной аппаратуры, называют систематическими. Систематические погрешности исключают введением поправок, найденных экспериментально. Погрешности другого типа — случайные — обусловлены влиянием на результат И. неконтролируемых факторов (ими могут быть, например, случайные колебания температуры, вибрации и т. д.). Случайные погрешности оцениваются методами математической статистики по данным многократных И. (см. Наблюдений обработка ).
В некоторых случаях — особенно часто встречающихся в атомной и ядерной физике — разброс результатов И. связан не только с погрешностями аппаратуры, но и с характером самих исследуемых явлений. Например, если пучок одинаково ускоренных электронов пропустить через щель дифракционной решётки, то электроны с определённой вероятностью попадут в разные точки поставленного за решёткой экрана (см. Дифракция частиц ). Приведённый пример показывает, что распространение И. на новые области физики требует пересмотра и уточнения понятий, которыми оперируют при И. в других областях. С развитием науки и техники возникла ещё одна важная проблема — автоматизация И. Это связано, с одной стороны, с условиями, в которых осуществляются современные И. (ядерные реакторы, открытый космос и т. д.), с другой стороны — с несовершенством органов чувств человека. В современном производстве, особенно в условиях высоких скоростей, давлений, температур, непосредственное соединение измерительных устройств с регулирующими, минуя человека, позволяет перейти к наиболее совершенной форме производства — автоматизированному производству.
И. в метрологии подразделяются на прямые, косвенные, совокупные и совместные. Прямыми называются И., при которых мера или прибор применяются непосредственно для И. данной величины (например, И. массы на циферблатных или равноплечных весах, И. температуры термометром). Косвенными называются И., результаты которых находят на основании известной зависимости между искомой величиной и непосредственно измеряемыми величинами (например, И. плотности однородного тела по его массе и геометрическим размерам). Совокупными называются И. нескольких одноимённых величин, значения которых находят решением системы уравнений, получаемых в результате прямых И. различных сочетаний этих величин (например, калибровка набора гирь, когда значения масс гирь находят на основании прямого И. массы одной из них и сравнения масс различных сочетаний гирь). Совместные И. — производимые одновременно И. двух или нескольких разноимённых величин с целью нахождения зависимости между ними (например, нахождение зависимости удлинения тела от температуры).
Различают также абсолютные и относительные И. К первым относят косвенные И., основанные на И. одной или нескольких основных величин (например, длины, массы, времени) и использовании значений фундаментальных физических постоянных , через которые измеряемая физическая величина может быть выражена. Под вторыми понимают И. либо отношения величины к одноимённой величине, играющей роль произвольной единицы, либо изменения величины относительно другой, принимаемой за исходную.
Найденное в результате И. значение измеряемой величины представляет собой произведение отвлечённого числа (числового значения) на единицу данной величины.
Результаты И. из-за погрешностей всегда несколько отличаются от истинного значения измеряемой величины, поэтому результаты И. обычно сопровождают указанием оценки погрешности (см. Погрешности измерений ).
Обеспечение единства И. в стране возлагается на метрологическую службу, хранящую эталоны единиц и производящую поверку применяемых средств И. Широкое распространение получила классификация И. по объектам И. Согласно ей, различают И. линейные (И. длины, площади, объёма), механические (И. силы, давления и пр.), электрические и т. д. В общем эта классификация соответствует основным разделам физики.
Лит.: Маликов С. Ф., Тюрин Н. И., Введение в метрологию, 2 изд., М., 1966; Маликов С. Ф., Введение в технику измерений, 2 изд., М., 1952; Яноши Л., Теория и практика обработки результатов измерений, пер. с англ., 2 изд., М., 1968; «Измерительная техника», 1961, № 12: 1962, № 4, 6, 8, 9, 10.
К. П. Широков.
В математической теории И. отвлекаются от ограниченной точности физических И. Задача И. величины Q при помощи единицы меры U состоит в нахождении числового множителя q в равенстве
(1)
при этом Q и U считаются положительными скалярными величинами одного и того же рода (см. Величина ), а множитель q — положительное действительное число, которое может быть как рациональным, так и иррациональным. Для рационального q = m/n (m и n — натуральные числа) равенство (1) имеет весьма простой смысл: оно означает, что существует такая величина V (n -я доля от U ), которая, будучи взята слагаемым n раз, даёт U, будучи же взята слагаемым m раз, даёт Q :
.
В этом случае величины Q и U называются соизмеримыми. Для несоизмеримых величин U и Q множитель q иррационален (например, равен числу p, если Q есть длина окружности, а U — её диаметр). В этом случае самое определение смысла равенства (1) несколько сложнее. Можно определить его так: равенство (1) обозначает, что для любого рационального числа r

