- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Конструкции, или почему не ломаются вещи - Джеймс Гордон
Шрифт:
Интервал:
Закладка:
Коэффициент Пуассона, или как работают наши артерии
Сердце - это, по существу, насос, который вгоняет кровь в артерии посредством довольно резких пульсаций. Работа сердца облегчается тем обстоятельством (которое идет и на благо организма в целом), что в нагнетательной, или систолической, фазе сердечного цикла справиться с избытком крови высокого давления помогает упругое растяжение аорты и больших артерий. Это сглаживает колебания давления и в целом улучшает циркуляцию крови. В действительности упругость артерий во многом играет ту же роль, что и воздушный рессивер, который конструктор часто ставит в системе, содержащей механический поршневой насос. В этом простом устройстве волна давления, которая сопровождает нагнетательный ход поршня, сглаживается за счет того, что нагнетаемой жидкости временно приходится сжимать воздух, удерживаемый над жидкостью в закрытом сосуде. Когда после окончания нагнетательного хода поршня клапан насоса закрывается (то же происходит и в диастолической фазе сердечного цикла), жидкость продолжает движение в гидросистеме за счет расширения сжатого воздуха (рис. 54).
Рис. 54. Упругое растяжение аорты и артерий играет ту же роль в сглаживании колебаний давления, что и наличие воздушного рессивера в поршневом насосе.
Это ритмичное чередование расширения артерий и их возвращения в исходное состояние благотворно и необходимо. Если с возрастом стенки артерий становятся более жесткими и менее эластичными, то давление крови повышается и сердцу приходится производить большую работу, что может отрицательно сказаться на его состоянии. Об этом знает большинство из нас, но о имеющейся здесь связи с деформациями стенок артерий задумываются немногие.
Как мы нашли в гл. 5, осевое напряжение в цилиндрической оболочке, такой, как стенка артерии, составляет ровно половину окружного напряжения. Это справедливо всегда, независимо от материала оболочки или трубы. Поэтому если бы закон Гука выполнялся в приведенной выше грубой формулировке, то осевая деформация также составляла бы половину окружной и общее удлинение артерии происходило бы в соответствующих пропорциях к ее первоначальным размерам.
Вспомним теперь, что главные артерии, такие, как артерии ног, могут иметь диаметр где-то около сантиметра, а длину около метра. Если упомянутые деформации действительно относились бы как два к одному, то, как показывает простой расчет, изменению диаметра артерии на 0,5 мм, которое без труда "умещается" в организме, соответствовало бы изменение длины на 25 мм.
Очевидно, что такого порядка изменения длины с частотой 70 раз в минуту невозможны и их на самом деле нет. Если бы такое происходило, наше тело вообще не могло бы функционировать. Достаточно только представить себе, что такое происходит с сосудами мозга.
К счастью, на самом деле продольные удлинения в находящихся под давлением трубах всех видов и размеров много меньше, чем можно было бы ожидать или опасаться. Доказательством того, что дело обстоит именно таким образом, является так называемый коэффициент Пуассона.
Если вы натянете резиновую ленту, она станет заметно тоньше, то же самое происходит и со всеми другими твердыми телами, хотя для большинства материалов это не так бросается в глаза. Напротив, если вы уменьшите длину куска материала, сжав его, поперечные размеры увеличатся. И то и другое происходит благодаря действию упругих сил, и первоначальная форма тела восстанавливается при снятии нагрузки.
Мы не замечаем этих поперечных перемещений в таких веществах, как сталь или кость, в силу малости как продольной, так и поперечной деформаций, но фактически и здесь дело обстоит точно так же. То обстоятельство, что подобные эффекты характерны для всех твердых тел и такое поведение существенно для практических задач, было впервые отмечено французом С.Д. Пуассоном (1781-1840). Он родился в очень бедной семье и в детстве не получил сколько-нибудь систематического образования, но в возрасте тридцати одного года стал академиком, а во Франции это одна из наивысших почестей, и он удостоился ее за свои работы в области теории упругости. Как было сказано в гл. 2, закон Гука гласит, что модуль Юнга = E = (напряжение / деформация) = s/e.
Поэтому, если мы приложим к плоской пластинке растягивающее напряжение s1, она удлинится упругим образом, так что в направлении растяжения деформация будет иметь величину e1 = s1/E.
Однако, кроме того, пластинка сократится в поперечном направлении (то есть в направлении под прямым углом к напряжению s1), и величину соответствующей деформации мы обозначим e2. Пуассон обнаружил, что для каждого материала отношение деформаций e1 и e2 есть величина постоянная, и это отношение теперь принято называть коэффициентом Пуассона. Ниже мы всюду будем использовать для этой величины обозначение ν. Таким образом, для данного материала, подвергаемого простому одноосному нагружению напряжением s1, ν=e2/e1 = коэфициент Пуассона[50]
Деформацию e1 в направлении напряжения s1 можно назвать первичной деформацией, а деформацию e2, вызванную напряжением s1 в перпендикулярном ему направлении, - вторичной деформацией (рис. 55). Согласно этому, e2 = νe1, а так как e1 = s1 / E (это - закон Гука), то e2 = νs1 / E.
Рис. 55. При одноосном нагружении твердого тела растягивающим напряжением s1 тело испытывает в направлении этого нагружения деформацию e1, а в поперечном направлении сокращается, при этом деформация равна e2.
Таким образом, если мы знаем значения величин ν и E, мы можем вычислить и первичную, и вторичную деформации.
Для материалов, используемых в технике, таких, как металлы, камень и бетон, значения ν лежат всегда между 1/4 и 1/3. Для твердых биологических материалов значения коэффициента Пуассона обычно выше, и часто они лежат вблизи 1/2. Преподаватели элементарной теории упругости сказали бы вам, что коэффициент Пуассона не может принимать значений больше 1/2, иначе происходили бы разного рода абсурдные и неприемлемые вещи. Это справедливо лишь отчасти, и значения коэффициента Пуассона для некоторых биологических материалов являются очень высокими, часто они больше единицы[51]. Экспериментальное значение коэффициента Пуассона для моего живота, измеренное недавно мною в ванне, составляет примерно единицу (см. сноску выше).
Таким образом, как сказано выше, благодаря коэффициенту Пуассона, если мы растягиваем в каком-либо одном направлении кусок материала, такой, как пленка или стенка артерии, он удлиняется в этом направлении, но одновременно сокращается в перпендикулярных. Поэтому в случаях, когда растягивающее напряжение действует не в одном, а в двух взаимно перпендикулярных направлениях, возникающие деформации будут разностью тех деформаций, которые создало бы каждое из этих напряжений в отдельности, и окажутся поэтому меньше последних.
При одновременном действии напряжений s1 и s2 суммарная деформация в направлении действия s1 будет e1 = (s1 - νs2)/E, а суммарная деформация в направлении действия s2 будет e2 = (s2 - νs1)/E.
Отсюда, используя результаты, приведенные в гл. 5[52], с учетом коэффициента Пуассона получаем, что продольная деформация стенок трубы, находящейся под внутренним давлением и сделанной из материала, подчиняющегося закону Гука, будет e2 = (rp/2tE)(1 - 2ν), где r - радиус, р - давление, t - толщина стенок.
В результате увеличение длины трубы оказывается значительно меньшим, чем можно было бы ожидать; для гуковского же материала с коэффициентом Пуассоны, равным 1/2, продольные перемещения вообще отсутствуют. В действительности, как говорилось выше, материал стенок артерий не подчиняется закону Гука, в то же время коэффициент Пуассона для него, вероятно, больше 1/2. Возможно, эти два фактора взаимно компенсируются, поскольку соответствующие удлинения, фактически наблюдаемые в эксперименте, очень малы[53]. Несомненно, тот факт, что артерии постоянно находятся в организме в натянутом состоянии, свидетельствует о мерах предосторожности, принятых Природой против любых возможных остаточных удлинений кровеносных сосудов.

