- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Журнал «Вокруг Света» № 1 за 2005 года (2772) - Вокруг Света
Шрифт:
Интервал:
Закладка:
Объединение двух фундаментальных теорий современной физики – квантовой теории и общей теории относительности – в рамках единого теоретического подхода до недавнего времени было одной из важнейших проблем. Примечательно, что эти две теории, взятые вместе, воплощают почти всю сумму человеческих знаний о наиболее фундаментальных взаимодействиях в природе. Поразительный успех этих двух теорий состоит в том, что вместе они могут объяснить поведение материи практически в любых условиях – от внутриядерной до космической области. Большой загадкой, однако, была несовместимость этих двух теорий. И было непонятно, почему природа на своем самом глубоком и фундаментальном уровне должна требовать двух различных подходов с двумя наборами математических методов, двух наборов постулатов и двух наборов физических законов? В идеале хотелось иметь Единую теорию поля, объединяющую эти две фундаментальные теории. Однако попытки их соединения постоянно разбивались из-за появления бесконечностей (расходимостей) или нарушения некоторых важнейших физических принципов. Объединить две эти теории удалось лишь в рамках теории струн и суперструн.
О пользе старых книгИстория создания теории струн началась с чисто случайного открытия в квантовой теории, сделанного в 1968 году Дж. Венециано и М. Судзуки. Перелистывая старые труды по математике, они случайно натолкнулись на бетта-функцию, описанную в XVIII веке Леонардом Эйлером. К своему удивлению, они обнаружили, что, используя эту бетта-функцию, можно замечательно описать рассеяние сталкивающихся на ускорителе частиц. В 1970—1971 годах Намбу и Гото поняли, что за матрицами рассеяния скрывается классическая (не квантовая) релятивистская струна, то есть некий микроскопический объект, отдаленно напоминающий тонкую, натянутую струну. Потом были сформулированы и построены методы квантования таких струн. Однако оказалось, что квантовую теорию струн корректно (без отрицательных или больших единицы квантовых вероятностей) можно построить лишь в 10 и 26 измерениях, и модель сразу перестала быть привлекательной. В течение 10 лет идея влачила жалкое существование, поскольку никто не мог поверить, что 10– или 26-мерная теория имеет какое-либо отношение к физике в 4-мерном пространстве-времени. Когда в 1974 году Шерк и Шварц сделали предположение, что эта модель является на самом деле теорией всех известных фундаментальных взаимодействий, никто не принял это всерьез. Спустя 10 лет, в 1984 году, появилась знаменитая работа М. Грина и Д. Шварца. В этой работе было показано, что возникающие при квантовомеханических расчетах бесконечности могут в точности сокращаться благодаря симметриям, присущим суперструнам. После этой работы теория суперструн стала рассматриваться как основной кандидат на единую теорию всех фундаментальных взаимодействий элементарных частиц, и ее начали активно разрабатывать, пытаясь свести все разнообразие частиц и полей микромира к неким чисто пространственно-геометрическим явлениям. В чем же заключается смысл этой «универсальной» теории?
Секрет взаимодействияМы привыкли думать об элементарных частицах (типа электрона) как о точечных объектах. Однако, возможно, первичным является не понятие частицы, а представление о некоей струне – протяженном, неточечном объекте. В этом случае все наблюдаемые частицы – просто колебания этих самых микроскопических струн. Струны бесконечно тонки, но длина их конечна и составляет около 10–35 м. Это ничтожно мало даже по сравнению с размером атомного ядра, так что для многих задач можно считать, что частицы точечные. Но для квантовой теории струнная природа элементарных частиц довольно-таки важна.
Струны бывают открытыми и замкнутыми. Двигаясь в пространствевремени, они покрывают (заметают) поверхности, называемые мировыми листами. Отметим, что поверхность мирового листа – гладкая. Из этого следует одно важное свойство струнной теории – в ней нет ряда бесконечностей, присущих квантовой теории поля с точечными частицами.
Струны имеют определенные устойчивые формы колебаний – моды, которые обеспечивают частице, соответствующей данной моде, такие характеристики, как масса, спин, заряд и другие квантовые числа. Это и есть окончательное объединение – все частицы могут быть описаны через один объект – струну. Таким образом, теория суперструн связывает все фундаментальные взаимодействия и элементарные частицы между собой способом, похожим на тот, которым скрипичная струна позволяет дать единое описание всех музыкальных тонов – зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.
Простейшее струнное взаимодействие, описывающее процесс превращения двух замкнутых струн в одну, можно представлять в виде устоявшейся аналогии – обычных штанов, форму которых приобретают их мировые листы. В этом случае штанины символизируют сближающиеся струны, сливающиеся в одну в районе верхней части штанов. Взаимодействие струн имеет очень естественный геометрический образ – оно связано с процессами разрыва и слияния струн. Соединим два простейших струнных взаимодействия между собой (склеим двое штанов в районе пояса). В результате получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие струны.
В струнной теории, в частности, существует замкнутая струна, соответствующая безмассовому гравитону – частице, переносящей гравитационное взаимодействие. Одной из особенностей теории является то, что она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.
Все выглядит достаточно просто и заманчиво, однако математические проблемы, с которыми столкнулись физики-теоретики при разработке новой теории, оказались крайне велики. Струны колеблются, двигаются, сливаются и разделяются в своеобразном 10-мерном пространстве, имеющем очень причудливую структуру, и на сегодня ученые не знают точно не только геометрию этого пространства, но и не имеют точных решений уравнений, описывающих поведение струн.
Уменьшить пространствоУ струн могут быть совершенно произвольные условия на границах. Например, замкнутая струна должна иметь периодичные граничные условия (струна «переходит сама в себя»). У открытых струн бывает два типа граничных условий – первый, когда концы струны могут свободно перемещаться в любую точку пространства, и второй, когда ее концы могут двигаться только по некоторому множеству точек внутри пространства. Это множество точек – многообразие – называется D-браной. Часто после буквы D пишут некоторое целое число, характеризующее число пространственных измерений многообразия.
Струнная теория – это нечто большее, чем просто теория взаимодействия элементарных частиц. Совсем недавно обнаружилась самая тесная связь между разрывами пространства, D3-бранами и черными дырами. И такие сугубо термодинамические характеристики, как температура и энтропия сколлапсировавшей звезды, нашли свое описание на языке суперструн.
Суперструны существуют в 10-мерном пространстве-времени, в то время как мы живем в 4-мерном, то есть воспринимаем различными органами чувств только три пространственные и одну временную координаты. И если суперструны описывают нашу Вселенную, нам необходимо связать между собой эти два пространства. Для этого обычно сворачивают 6 дополнительных измерений до очень маленького размера (порядка 10–35 м). Из-за малости этого расстояния оно становится абсолютно незаметным не только для глаза, но и всех современных ускорителей элементарных частиц. В конечном итоге мы получим привычное 4-мерное пространство, каждой точке которого отвечает крохотное 6-мерное пространство, так называемое Калаби-Яу.
Идея сворачивания лишних координат восходит к работе 1921 года Теодора Калуцы и статье 1926 года Оскара Клейна. Описанный выше механизм называют теорией Калуцы–Клейна, или компактификацией. В самой работе Калуцы показано, что если взять общую теорию относительности в 5-мерном пространстве-времени, а затем свернуть одно измерение в окружность, то получится 4-мерное пространство-время с общей теорией относительности плюс электромагнетизм. Хотя свернутые измерения и малы для прямого обнаружения, тем не менее они имеют глубокий физический смысл.
У струн есть еще одно замечательное свойство – они могут «наматываться» на компактное измерение. Это приводит к появлению так называемых оборотных мод в спектре масс. Замкнутая струна может обернуться вокруг компактного измерения целое число раз. В теории струн для малых размеров дополнительных измерений оборотные моды становятся очень легкими. Это позволяет интерпретировать эти моды как наблюдаемые нами элементарные частицы.

