Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Биология » Общая биология: конспект лекций - Е. Козлова

Общая биология: конспект лекций - Е. Козлова

Читать онлайн Общая биология: конспект лекций - Е. Козлова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 34
Перейти на страницу:

2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);

3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).

Жиры

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

Функции липидов:

1) энергетическая (при распаде 1 г липидов образуется 38,9 кдж энергии);

2) структурная (фосфолипиды клеточных мембран, образующие липидный бислой);

3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

6) теплоизолирующая (подкожная клетчатка сохраняет тепло). АТФ

Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. АТФ образуется в митохондриях в процессе фосфорилирования. При ее гидролизе высвобождается большое количество энергии. АТФ является основным макроэргом клетки – аккумулятором энергии в виде энергии высокоэнергетических химических связей.

ЛЕКЦИЯ № 3. Нуклеиновые кислоты. Биосинтез белка

Нуклеиновые кислоты – это фосфорсодержащие биополимеры, мономерами которых являются нуклеотиды. Цепи нуклеиновых кислот включают от нескольких десятков до сотен миллионов нуклеотидов.

Существует 2 вида нуклеиновых кислот – дезоксирибо-нуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезокси-рибозу, в состав РНК – рибозу.

1. ДНК

Как правило, ДНК представляет собой спираль, состоящую из двух комплиментарных полинуклеотидных цепей, закрученных вправо. В состав нуклеотидов ДНК входят: азотистое основание, дезоксирибоза и остаток фосфорной кислоты. Азотистые основания делят на пуриновые (аденин и гуанин) и пиримидиновые (ти-мин и цитозин). Две цепи нуклеотидов соединяются между собой через азотистые основания по принципу комплементарности: между аденином и тимином возникают две водородные связи, между гуанином и цитозином – три.

Функции ДНК:

1) обеспечивает сохранение и передачу генетической информации от клетки к клетке и от организма к организму, что связано с ее способностью к репликации;

2) регуляция всех процессов, происходящих в клетке, обеспечиваемая способностью к транскрипции с последующей трансляцией.

Процесс самовоспроизведения (авто-репродукции) ДНК называется репликацией. Репликация обеспечивает копирование генетической информации и передачу ее из поколения в поколение, генетическую идентичность дочерних клеток, образующихся в результате митоза, и постоянство числа хромосом при митоти-ческом делении клетки.

Репликация происходит в синтетический период интерфазы митоза. Фермент репликаза движется между двумя цепями спирали ДНК и разрывает водородные связи между азотистыми основаниями. Затем к каждой из цепочек с помощью фермента ДНК-полимеразы по принципу комплементарности достраиваются нуклеотиды дочерних цепочек. В результате репликации образуются две идентичные молекулы ДНК. Количество ДНК в клетке удваивается. Такой способ удвоения ДНК называется полуконсервативным, так как каждая новая молекула ДНК содержит одну «старую» и одну вновь синтезированную полинуклеотидную цепь.

2. РНК

РНК – одноцепочечный полимер, в состав мономеров которого входят пуриновые (аденин, гуанин) и пиримидиновые (урацил, цитозин) азотистые основания, углевод рибоза и остаток фосфорной кислоты.

Различают 3 вида РНК: информационную, транспортную и рибо-сомальную.

Информационная РНК (и-РНК) располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.

Транспортная РНК (т-РНК) также содержится в ядре и цитоплазме клет-ки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции – биосинтеза белка.

Рибосомальная РНК (р-РНК) содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.

3. Биосинтез белка

Биосинтез белка в организме эукариот происходит в несколько этапов.

1. Транскрипция – это процесс синтеза и-РНК на матрице ДНК. Цепи ДНК в области активного гена освобождаются от ги-стонов. Водородные связи между комплементарными азотистыми основаниями разрываются. Основной фермент транскрипции РНК-полимераза присоединяется к промотору – специальному участку ДНК. Транскрипция проходит только с одной (кодоген-ной) цепи ДНК. По мере продвижения РНК-полимеразы по кодо-генной цепи ДНК рибонуклеотиды по принципу комплементарности присоединяются к цепочке ДНК, в результате образуется незрелая про-и-РНК, содержащая как кодирующие, так и некоди-рующие нуклеотидные последовательности.

2. Затем происходит процессинг – созревание молекулы РНК. На 5-конце и-РНК формируется участок (КЭП), через который она соединяется с рибосомой. Ген, т. е. участок ДНК, кодирующий один белок, содержит как кодирующие последовательности нуклеотидов – экзоны, так и некодирующие – интроны. При про-цессинге интроны вырезаются, а экзоны сшиваются. В результате на 5-конце зрелой и-РНК находится кодон-инициатор, который первым войдет в рибосому, затем следуют кодоны, кодирующие аминокислоты полипептида, а на 3-конце – кодоны-терминато-ры, определяющие конец трансляции. Цифрами 3 и 5 обозначаются соответствующие углеродные атомы рибозы. Кодоном называется последовательность из трех нуклеотидов, кодирующая какую-либо аминокислоту – триплет. Рамка считывания нуклеиновых кислот предполагает «слова»-триплеты (кодоны), состоящие из трех «букв»-нуклеотидов.

Транскрипция и процессинг происходят в ядре клетки. Затем зрелая и-РНК через поры в мембране ядра выходит в цитоплазму, и начинается трансляция.

3. Трансляция – это процесс синтеза белка на матрице и РНК. В начале и-РНК 3-концом присоединяется к рибосоме. Т-РНК доставляют к акцепторному участку рибосомы аминокислоты, которые соединяются в полипептидную цепь в соответствии с шифрующими их кодонами. Растущая полипептидная цепь перемещается в донорный участок рибосомы, а на акцепторный участок приходит новая т-РНК с аминокислотой. Трансляция прекращается на кодонах-терминаторах. Генетический код

Это система кодирования последовательности аминокислот белка в виде определенной последовательности нуклеотидов в ДНК и РНК.

Единица генетического кода (кодон) – это триплет нуклеоти-дов в ДНК или РНК, кодирующий одну аминокислоту.

Всего генетический код включает 64 кодона, из них 61 кодирующий и 3 некодирующих (кодоны-терминаторы, свидетельствующие об окончании процесса трансляции).

Кодоны-терминаторы в и-РНК: УАА, УАГ, УГА, в ДНК: АТТ, АТЦ, АЦТ.

Начало процесса трансляции определяет кодон-инициатор (АУГ, в ДНК – ТАЦ), кодирующий аминокислоту метионин. Этот кодон первым входит в рибосому. Впоследствии метионин, если он не предусмотрен в качестве первой аминокислоты данного белка, отщепляется.

Генетический код обладает характерными свойствами.

1. Универсальность – код одинаков для всех организмов. Один и тот же триплет (кодон) в любом организме кодирует одну и ту же аминокислоту.

2. Специфичность – каждый кодон шифрует только одну аминокислоту.

3. Вырожденность – большинство аминокислот могут кодироваться несколькими кодонами. Исключение составляют 2 аминокислоты – метионин и триптофан, имеющие лишь по одному варианту кодона.

4. Между генами имеются «знаки препинания» – три специальных триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза полипептидной цепи.

5. Внутри гена «знаков препинания» нет.

ЛЕКЦИЯ № 4. Основные клеточные формы

1. Прокариоты

Все живые организмы на Земле принято подразделять на до-клеточные формы, которые не имеют типичного клеточного строения (это вирусы и бактериофаги), и клеточные, имеющие типичное клеточное строение. Эти организмы в свою очередь подразделяют на две категории:

1) доядерные прокариоты, которые не имеют типичного ядра. К ним относят бактерии и сине-зеленые водоросли;

2) ядерные эукариоты, которые имеют типичное четко оформленное ядро. Это все остальные организмы. Прокариоты возникли гораздо раньше эукариот (в архейскую эру). Это очень маленькие клетки размером от 0,1 до 10 мкм. Иногда встречаются гигантские клетки до 200 мкм.

1 2 3 4 5 6 7 8 9 10 ... 34
Перейти на страницу:
На этой странице вы можете бесплатно скачать Общая биология: конспект лекций - Е. Козлова торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергей
Сергей 24.01.2024 - 17:40
Интересно было, если вчитаться