- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Начертательная геометрия: конспект лекций - Ю. Щербакова
Шрифт:
Интервал:
Закладка:
На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.
Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.
Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.
Если некоторая точка С лежит на прямой АВ, ее проекции с и с́ находятся на одноименных проекциях прямой ab и а́b́. Данную ситуацию поясняет рисунок 19.
2. Следы прямой
След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).
Горизонтальным следом прямой называется некоторая точка H, в которой прямая встречается с горизонтальной плоскостью, а фронтальным – точка V, в которой данная прямая встречается с фронтальной плоскостью (рис. 20).
На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.
Иногда также рассматривается профильный след прямой, W – точка пересечения прямой с профильной плоскостью.
Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция h совпадает с этим следом, а фронтальная h́ лежит на оси х. Фронтальный след лежит во фронтальной плоскости, поэтому его фронтальная проекция ν́ совпадает с ним же, а горизонтальная v лежит на оси х.
Итак, H = h, и V = ν́. Следовательно, для обозначения следов прямой можно применять буквы h и ν́.
3. Различные положения прямой
Прямую называют прямой общего положения, если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.
Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси у), – фронтальная прямая; на рисунке 24 показана прямая, которая параллельна профильной плоскости (перпендикулярна оси х), – профильная прямая. Несмотря на то что каждая из данных прямых образует с одной из осей прямой угол, они не пересекают ее, а только скрещиваются с нею.
Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям х и у. Поэтому проекции áb́|| х и a˝b˝|| у, т. е. они перпендикулярны оси z. Горизонтальная проекция ab может занимать любое положение на эпюре.
У фронтальной прямой (рис. 23) проекции аb || x и a˝b˝ || z, т. е. они перпендикулярны оси у, а потому в этом случае фронтальная проекция а́b́ прямой может занимать произвольное положение.
У профильной прямой (рис. 24) аb || у, а́b|| z, и обе они перпендикулярны оси х. Проекция а˝b˝ может располагаться на эпюре любым образом.
При рассмотрении той плоскости, которая проецирует горизонтальную прямую на фронтальную плоскость (рис. 22), можно заметить, что она проецирует эту прямую и на профильную плоскость, т. е. она является плоскостью, которая проецирует прямую сразу на две плоскости проекций – фронтальную и профильную. Исходя из этого ее называют дважды проецирующей плоскостью. Таким же образом для фронтальной прямой (рис. 23) дважды проецирующая плоскость проецирует ее на плоскости горизонтальной и профильной проекций, а для профильной (рис. 23) – на плоскости горизонтальной и фронтальной проекций.
Две проекции не могут определить прямую. Две проекции 1 и 1́ профильной прямой (рис. 25) без уточнения на них проекций двух точек этой прямой не определят положения данной прямой в пространстве.
В плоскости, которая перпендикулярна двум заданным плоскостям симметрии, возможно существование бесчисленного множество прямых, для которых данные на эпюре 1 и 1́ являются их проекциями.
Если точка находится на прямой, то ее проекции во всех случаях лежат на одноименных проекциях этой прямой. Обратное положение не всегда справедливо для профильной прямой. На ее проекциях можно произвольным образом указать проекции определенной точки и не быть уверенным в том, что эта точка лежит на данной прямой.
Во всех трех частных случаях (рис. 22, 23 и 24) положения прямой по отношению к плоскости проекций произвольный ее отрезок АВ, взятый на каждой из прямых, проецируется на одну из плоскостей проекций без искажения, т. е. на ту плоскость, которой он параллелен. Отрезок АВ горизонтальной прямой (рис. 22) дает проекцию в натуральную величину на горизонтальную плоскость (аb = АВ); отрезок АВ фронтальной прямой (рис. 23) – в натуральную величину на плоскость фронтальной плоскости V (áb́ = AB) и отрезок АВ профильной прямой (рис. 24) – в натуральную величину на профильную плоскость W (a˝b˝ = АВ), т. е. представляется возможным измерить на чертеже натуральную величину отрезка.
Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.
Угол, который составляет прямая с горизонтальной плос костью Н, принято обозначать буквой α, с фронтальной плоскостью – буквой β, с профильной плоскостью – буквой γ.
Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).
4. Взаимное расположение двух прямых
Возможны три случая расположения прямых в пространстве:
1) прямые пресекаются, т. е. имеют общую точку;
2) прямые параллельны, т. е. не имеют общей точки, но лежат в одной плоскости;
3) прямые скрещиваются, т. е. не лежат в одной плоскости, т. е. через них нельзя провести плоскость.
Когда прямые пересекаются, на эпюре точки пересечения их одноименных проекций на горизонтальной и фронтальной плоскостях находятся на одном перпендикуляре к оси х.
Рассмотрим прямые I и II, которые пересекаются в точке А (рис. 26). Спроецируем обе прямые на горизонтальную плоскость. Если учесть, что точка А принадлежит обеим прямым, то ее проекция а будет принадлежать также и обеим проекциям прямых.
Похожая картина будет и на фронтальной плоскости, т. е. эти точки пересечения одноименных проекций а и а́ являются проекциями некоторой точки А, и поэтому они должны лежать на одном перпендикуляре к оси х. Точно так же будет верным и обратное утверждение: если на эпюре точки пересечения одноименных проекций прямых на две плоскости (горизонтальную и фронтальную) лежат на одном перпендикуляре к оси х, то эти прямые пересекаются.
Пусть проекции прямых I к II (рис. 27) подчиняются этому условию.
Тогда точки пересечения их одноименных проекций можно рассматривають как проекции некоторой точки в пространстве. Обозначим точку пересечения горизонтальных проекций 1 и 2 буквой а, а точку пересечения фронтальных проекций 1́ и 2́ – буквой а́. Рассматриваемая точка А находится и на прямой I, и на прямой II. То есть она является их общей точкой, в которой пересекаются эти прямые.
Прямое утверждение справедливо во всех случаях без исключения. Обратное же утверждение неприменимо в том случае, если хотя бы одна из прямых профильная.
Когда прямые параллельны, на эпюре их одноименные проекции параллельны (рис. 28).
На самом деле, плоскости Р и Q, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в каждой из этих плоскостей можно указать две пересекающиеся прямые, параллельные двум пересекающимся прямым второй плоскости, т. е. прямая I параллельна прямой II, и проектирующий луч Аа параллелен лучу Вb. Но две параллельные плоскости Р и Q пересекут горизонтальную плоскость. В результате этого образуются две параллельные прямые 1 и 2, т. е. горизонтальные проекции прямых I и II параллельны между собой.

