- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Юный техник, 2011 № 05 - Журнал «Юный техник»
Шрифт:
Интервал:
Закладка:
«Первоначально мы назвали свое детище «Турист», что означает «телеуправляемый робот-исследователь сухопутных территорий», но потом по согласованию со специалистами ИМБП, где проходит эксперимент «Марс-500», робот получил второе имя — «Гулливер», — рассказал Валерий Ивченко, проректор по научной работе Московского государственного университета приборостроения и информатики (МГУПИ), где был создан «марсоход». Оснащенный манипулятором робот может брать и доставлять на посадочный модуль образцы грунта и куски породы весом до 200 г, а также расставлять на исследуемой поверхности приборы и аппаратуру. Его высокую мобильность обеспечивают три пары «ног»-колес, которые приводятся в движение шестью двигателями, а шесть «глаз»-видеокамер, установленных на платформе и на манипуляторе, позволяют сидящим у монитора «марсонавтам» следить за работой механического помощника и управлять им по радио.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
«Антизеркала» дают возможность творить чудеса
Зеркало — одно из самых древних изобретений человечества. В них смотрелись красавицы, им приписывали магические свойства, их использовали в оптике и астрономии…
В нынешнем, XXI веке вдруг выяснилось, что наряду с обычными зеркалами существуют еще и некие антизеркала…
Многим известен такой простой физический фокус. Если поставить друг напротив друга два зеркала, а между ними поместить горящую свечу, то в зеркальном отражении можно увидеть некий бесконечный коридор, освещенный множеством свечей.
А вот недавно китайские ученые из университета Сучоу впервые продемонстрировали другой удивительный оптический эффект. А именно, если перед их антизеркалом — так они назвали свое устройство — поместить две или больше свечей, то их изображение не размножится, а сольется воедино, как будто горит одна свеча.
Но само свечение становится при этом ярче.
«Эффект основывается на суперлинзе с отрицательным коэффициентом преломления», — поясняют исследователи. Для наглядной демонстрации свойств своего антизеркала они поместили по разные стороны суперлинзы два цилиндра (а свечи, как известно, тоже цилиндрической формы). В итоге с любой стороны от линзы наблюдатель видел только один цилиндр. Авторы разработки пояснили, что подобный эффект достигается за счет увеличения амплитуды так называемых исчезающих волн, что является одной из особенностей суперлинз.
Сами же суперлинзы изготовляются из так называемых метаматериалов. Так, если помните, называются искусственно созданные вещества с необычными свойствами. Они содержат периодически повторяющиеся микроструктуры, обуславливающие необычное взаимодействие материала с электромагнитными волнами.
Наибольшую известность получили метаматериалы, проявляющие необычные оптические свойства. Мы уже рассказывали, что именно метаматериалы используются для создания «шапок-невидимок» — устройств, с помощью которых стараются сделать невидимыми те или иные объекты. Из аналогичного материала была создана и суперлинза, обладающая отрицательным коэффициентом преломления. Такие линзы создавались и раньше, но никто поначалу не обращал внимания, что они могут проявлять «антизеркальные» свойства.
Руководитель исследовательской группы Киньянг Чен пояснил, что «исчезновение» объектов в суперлинзах происходит из-за того, что изображения каждого цилиндрического проводника перекрывают друг друга. Такое иногда можно видеть на сцене, когда танцоры прячутся, выстраиваясь в затылок друг другу, и зрители видят вместо нескольких человек одного.
По мнению исследователей, «антизеркальный эффект» может применяться как в системах твердотельного освещения, например в светодиодной технике, так и в источниках когерентного света, таких как лазеры. На данный момент одним из существенных препятствий в развитии светодиодной техники является получение яркости, достаточной для создания систем общего освещения. Одним из способов увеличения яркости является помещение нескольких светодиодов в один корпус, однако в таком случае излучение лампы становится неоднородным.
С помощью же новой технологии можно создать иллюзию одиночного источника света с высокой яркостью. Также предложенный учеными метод может позволить «сложить» воедино несколько лазерных лучей, создав один луч огромной мощности.
Не существовавший ранее в природе тип отражающей поверхности создали и британские физики. Для стороннего наблюдателя новое зеркало отражает видимый свет так же, как обычное. Но на деле — принципиально по-другому, утверждают Александр Шванеке и его коллеги из Центра нанофотоники университета Саутгемптона (Великобритания).
Тут, очевидно, нужно пояснить, что и обычное зеркало имеет особенность, на которую мало кто обращает внимание. Отражая свет, оно не только направляет световые лучи в соответствии с законом отражения (угол падения равен углу отражения), но проделывает со светом еще одну, незаметную для глаз вещь. А именно: зеркало меняет фазу электрической составляющей электромагнитной волны на противоположную, оставляя фазу магнитной составляющей неизменной.
Так ведут себя естественные материалы при отражении лучей. А вот магнитное «антизеркало», созданное Шванеке, действует прямо противоположным образом — при отражении электромагнитной волны оно обращает магнитную составляющую колебаний, но не затрагивает электрическую. Так что в сравнении с зеркалом обычным его тоже можно было бы назвать антизеркалом.
Интересно, что созданное британскими учеными зеркало работает в видимом диапазоне световых волн, так что теоретически в него можно посмотреться. Правда, сделать это непросто, поскольку зеркало представляет собой квадратик со стороной 500 микрометров. Но даже если бы такое зеркало сделали большим — зрительно никто бы разницу не заметил. А вот в экспериментах с интерференцией, спектрометрией, излучением отдельных молекул — разница уже ощущается.
Авторы устройства говорят, что его экзотические свойства могут пригодиться во многих экспериментах со светом, в создании новых типов фотодатчиков или элементов систем связи. Тем более что, по их словам, можно построить такое же зеркало и для инфракрасного диапазона.
И в данном случае секрет изобретения заключается в том, что фактически это зеркало — метаматериал. Точнее, само зеркало состоит из двух слоев подложки (сначала алюминий, сверху — диоксид кремния) и рабочего слоя, выполненного из алюминия, но не сплошного, а в виде упорядоченной структуры из волнистых нанопроводов, образующих рисунок типа «рыбья чешуя». Причем размер «чешуек» — меньше длины волны падающего света, так что на поверхности даже малого зеркала таких элементов поместился целый миллион. «Чешуйки» как раз и отвечают за отражение электромагнитной волны столь неправильным образом.
УДИВИТЕЛЬНО, НО ФАКТ!
Математические способности… микробов
Согласитесь, трудно заподозрить бактерии в умении считать. Однако, как показали недавние исследования зарубежных ученых, несмотря на это, их можно использовать для создания компьютеров, которые ждет большое будущее. Во всяком случае, в том уверен журнал Nature Biotechnology.
Спасибо бактериямБиологи и математики Университета Западного Миссури совместно со своими коллегами из Колледжа Дэвидсона (Северная Каролина) несколько лет изучают возможность построения биологического компьютера, пишет журнал. Для этого они провели детальный анализ ДНК бактерий Escherichia coli и на их основе смогли построить бактериальную вычислительную систему, способную разрешить несколько фундаментальных проблем математики.
Одной из них является так называемая проблема Гамильтонова пути, названная так в честь ирландского ученого Уильяма Гамильтона, жившего в XIX веке (1805–1865). Этот путь представляет собой ломаную линию, которая вписана в сложную трехмерную фигуру таким образом, что проходит через каждую ее вершину только один раз.
Сам Гамильтон сумел решить эту задачку на примере додекаэдра — правильного 12-гранника. Однако при переходе к фигурам с большим количеством вершин сложность задачи быстро растет.
Микробы, оказывается, способны решать проблемы Гамильтонова пути не только на примере додекаэдра (справа).
Обычные компьютеры тоже начинают буксовать, когда количество вершин переваливает за несколько десятков. Между тем решение этой задачи для возможно большого числа вершин и граней имеет огромное значение не только для теоретической науки, но и для практического применения. Например, при построении компьютерных сетей, в которых сигнал должен с минимальными потерями пройти от начала до конца, побывав в каждом ключевом узле не более одного раза. Задача кажется простой и даже тривиальной для точек, расположенных на прямой, но по мере усложнения структуры превращается в головоломку.

