- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - Виктор Бродянский
Шрифт:
Интервал:
Закладка:
С. Карно поставил перед собой задачу определить количественно «движущую силу огня», т. е., говоря современным языком, то максимальное количество работы, которое может дать единица количества теплоты.
Несмотря на то, что С. Карно исходил в этой работе еще из теории теплорода, а закон сохранения движущей силы (т. е. энергии)[47] он сформулировал позже — между 1824 и 1832 гг. — он блестяще решил задачу.
Позднейшим исследователям оставалось лишь придать математическую форму положениям Карно и развить их применительно к новым научным фактам, изложив их с учетом первого закона. Только через четверть века термодинамика пошла дальше, но основные идеи Карно остались незыблемыми. Такая поразительная устойчивость основных положений С. Карно (свойственная вообще великим научным открытиям) связана с тем, что он подошел к задаче с максимально общих позиций, исключив все частности, не имеющие принципиального значения. Он рассматривал не какую-то определенную паровую машину, даже не паровую машину вообще, а абстрактный, идеальный тепловой двигатель, результаты действия которого не зависят от его конструкции. Для этого он ввел специальный цикл, впоследствии названный его именем.
Из многочисленных следствий работы С. Карно для нашей цели — анализа ppm-2 — наиболее важно положение о том, что для непрерывной работы теплового двигателя необходим источник теплоты с более высокой температурой и теплоприемник с более низкой — так называемый принцип Карно. Математическое выражение принципа Карно, определяющее условия перехода теплоты Q в работу L при заданных температурных условиях, было выведено Р. Клаузиусом в виде предельно простой, широко известной формулы
L = Q1∙(T1 – T2)/T1 (3.1)
Здесь, как и на рис. 3.1, высокая температура Т1 в Кельвинах соответствует подводу теплоты Q1 к двигателю, а более низкая Т2 — та, при которой теплота отдается. Из формулы (3.1) прямо следуют многие важные следствия. Для нас имеют значение два вывода.
Первый вывод состоит в том, что получаемая работа всегда меньше подводимой к двигателю теплоты Q. Действительно, коэффициент Карно (Т1 — Т2)/Т1 (или 1 — T2/T1) всегда меньше единицы. Другими словами, в работу может быть превращена только часть получаемой теплоты; другая часть, равная Q2 = Q1 — L, неизбежно должна быть отдана какому-либо теплоприемнику[48] при температуре Т2. Чем выше температура Т1 и ниже Т2, тем большая доля теплоты Q1 может быть превращена в работу. Но всю теплоту Q1 в работу преобразовать нельзя (для этого Т1 должна была бы быть бесконечно большой или Т2 бесконечно малой).
Так, например, если Т1 = 1200 К, а T2 = 300 К, то из 100 кДж теплоты может быть получено (1200 – 300)/1200 кДж = 75 кДж работы. Остальные 25 кДж могут быть отведены только в виде теплоты Q2 < Q1 при температуре Т2 = 300 К.
Таким образом, из принципа Карно следует, что превратить теплоту в работу полностью нельзя. Следовательно, в природе существует асимметрия во взаимной превратимости теплоты и работы: работа в теплоту может превратиться полностью, но теплота в работу — только частично. Другая, непревратимая часть теплоты неизбежно отводится из двигателя к теплоприемнику (но при более низкой температуре).
Второй вывод из принципа Карно состоит в том, что получение работы из теплоты возможно только в том случае, когда между теплоотдатчиком и теплоприемником есть разность температур (т. е. Т1 > T2). Действительно, из формулы (3.1) следует, что чем меньше разность Т1 — Т2, тем меньшая доля теплоты Q может быть превращена в работу. Если же Т1 = Т2, т. е. если двигатель вступает в тепловой контакт с телами, имеющими одну и ту же температуру, то никакой работы он произвести не может (Т1 — T2 = 0, и, следовательно, L = 0 при любом Q).
Никакими ухищрениями обойти оба эти следствия из принципа Карно нельзя.
Второй вывод из принципа Карно убивает наповал идею о двигателе, работающем за счет теплоты, получаемой из равновесной окружающей среды (ppm-2).
Как бы ни была велика связанная с хаотическим тепловым движением молекул внутренняя энергия, содержащаяся в окружающей среде[49], она неработоспособна, ибо в этом случае в нашем распоряжении есть только одна температура — окружающей среды TО.С..
Таким образом, само по себе наличие энергии еще не говорит о том, что может быть получена работа: энергия может быть и неработоспособной. Поэтому определение энергии, которое еще встречается в некоторых книгах и даже учебниках, как «величины, характеризующей способности тела (или системы) производить работу», в общем случае неверно. Оно досталось по наследству от XVII-XVIII вв., когда представление об энергии (по тогдашней терминологии — «силе») было связано только с механической работой. Принцип Карно ясно показывает, что такое определение (во всяком случае, применительно к внутренней энергии тела и к теплоте, отводимой от него) неверно.
Вокруг нас в воздухе, воде, почве содержится гигантское количество внутренней энергии хаотического молекулярного движения, но, увы, она вопреки надеждам изобретателей ppm-2 для получения работы абсолютно бесполезна. Это утверждает принцип Карно, вытекающий из второго закона термодинамики.
Из всего изложенного неизбежно следует, что единственный способ обоснования возможности «извлекать тепловую энергию из окружающего пространства» и получать из нее работу состоит в низвержении второго закона термодинамики. Вокруг этой крепости — второго закона — и развертывают все баталии изобретатели и теоретики ppm-2.
Чтобы разобраться во всем этом и показать безнадежность попыток опровергнуть второй закон, нужно рассмотреть некоторые его положения, не ограничиваясь принципом Карно. Особое внимание следует уделить вопросу об энтропии — величине, занимающей центральное место в концепции второго закона. На ее долю выпадает максимальное количество атак, кривотолков и даже нехороших слов. Один из ее противников назвал ее даже «ржавым замком», который запирает ворота на пути дальнейшего движения науки.
3.3. Немного об энтропии
Начнем с того, что вернемся к понятию теплорода (у Карно французское слово calorique — «калорик») и представлению о том, как он создает работу (рис. 3.1).
Мы уже говорили о том, что такое понимание связано с теорией о некоем веществе, которое протекает сверху вниз (от высокой температуры к низкой), производя работу; при этом его количество не меняется. С установлением механической теории тепловых явлений это представление, естественно, отпало.
Однако оказалось (как это часто бывает), что в представлении о том, что сквозь двигатель проходит поток «чего-то», не меняющего при его работе свое значение, есть некое рациональное зерно.
Действительно, вникнем немного глубже в уравнение, отражающее принцип Карно, установив из него связь количеств теплоты Q1 и Q2 и температур Т1 и Т2. Для этого преобразуем его. Очевидно (по закону сохранения энергии — первому закону термодинамики), что Q2 = Q1 — L; тогда основное уравнение Карно можно переписать, заменив работу L на ее значение, так:
или, после упрощений:
Q1/T1 = Q2/T2 (3.3)
Выходит, что отношения количеств теплоты к соответствующим температурам (так сказать, «приведенная» теплота) и на входе теплового потока, и на выходе равны. Значит, действительно, есть тепловая величина, отличающаяся от «просто» теплоты, сохраняющая для двигателя постоянное значение в процессах ее подвода и отвода![50]
Замечательное свойство величины Q/T сохраняется и в другом, тоже достаточно важном случае.
Мы уже говорили о том, что двигатель, введенный Карно, — идеальный, т. е. работает без потерь. Это означает, что работа, получаемая от него, максимальна при данных Q1 и температурах Т1 и Т2, т. е. полностью соответствует величине L в формуле (3.1), Если использовать полученную работу, то цикл может быть пущен и в обратную сторону. Понятие о такой обращенной тепловой машине тоже введено С. Карно в его знаменитой книге. При таком «обращении» идеального цикла все количественные соотношения между величинами, определяющими его работу, останутся прежними, только вместо переноса «теплорода» с высокой температуры на низкую будет происходить обратный процесс — перенос его с низкого уровня температуры на высокий. Для этого потребуется ровно столько же работы, сколько ее было получено, и все вернется в исходное состояние. Другими словами, такой цикл обладает свойством обратимости. На рис. 3.2 показаны оба случая с потоками энергии. Потоки энергии показаны в виде полос, ширина которых пропорциональна потоку энергии. Такие графики называются полосовыми. Отношения Q/T в обоих случаях остаются одинаковыми и на входе теплоты, и на ее выходе.

