Категории
Самые читаемые
Лучшие книги » Домоводство, Дом и семья » Сад и огород » Статьи о природном земледелии (Плодородие почвы и агротехника) - Геннадий Федорович Распопов

Статьи о природном земледелии (Плодородие почвы и агротехника) - Геннадий Федорович Распопов

Читать онлайн Статьи о природном земледелии (Плодородие почвы и агротехника) - Геннадий Федорович Распопов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 91
Перейти на страницу:
вегетативной гибридизации в настоящее время отсутствуют.

Я вынужден напомнить основы современной молекулярной генетики, для тех, кто в школе проходил только курс «генетики по Менделю» много лет назад.

Итак, все организмы состоят из клеток, как бы кирпичиков живого. Каждая клетка содержит включения, органеллы, нужные для выполнения клеточных функций, и ядро. В ядре расположен генетический материал. Он в большинстве организмов представлен несколькими гигантскими молекулами дезоксирибонуклеиновой кислоты (ДНК). Единички, из которых состоит этот полимер, называются нуклеотидами. Каждый нуклеотид состоит из геретоцикла (гетеро — так как там атомы углерода перемежаются с атомами азота), называемого азотистым основанием, и сахара дезоксирибозы — моносахарида, содержащего пять атомов углерода и альдегидную группу в линейной структуре — и фосфатной группы. Например, аденин — это восьмерка, составленная из пятичлена и шестичлена, в которых перемежаются атомы углерода и азота. Рибоза это моносахарид в виде кольца, составленного из 4 атомов углерода и одного кислорода.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. Последовательность этих единичек нуклеотидов и кодирует наследственность. Для того чтобы увеличить стойкость полимерной молекулы ДНК к лучевым и химическим воздействиям, она удвоена и состоит из двух комплементарных (строго зависимых друг от друга) полимеров, которые закручены в спираль один вокруг другого. При этом нуклеотиды, расположенные в спирали друг напротив друга присоединяются друг к другу и они комплементарны, аденин соединяется только с тимином и может стоять только напротив тимина, гуанин — только с цитозином.

Дублирование информации позволяет реализовать два процесса.

1. Если одна спираль будет повреждена, то на основе другой, как на матрице можно будет восстановить первую.

2. На основе одной из спиралей синтезируется комплементарная молекула РНК, которая имеет только одну цепь и затем перемещается из ядра в цитоплазму клетки, где на её основе синтезируется уже другой гетерополимер: полипептид или белок. Именно белки и осуществляют большинство функций клеток, служа катализаторами и строительным материалом.

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счет копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции).

Информация, записанная в ДНК, сначала должна быть "переписана" на молекулу РНК (этот процесс называется транскрипцией). Затем специальные сложные молекулярные комплексы — рибосомы — "считывают" информацию с молекулы РНК, синтезируя молекулу белка в точном соответствии с записанной в РНК "инструкцией" (этот процесс называется трансляцией). Белки выполняют огромное множество функций, и, в конечном счете, именно они определяют строение организма (фенотип). Таким образом, информация движется в одном направлении — от ДНК к РНК, от РНК — к белкам. Никаких механизмов переноса информации в обратную сторону — от белков к РНК или от РНК к ДНК обнаружено не было.

Со временем были обнаружены вирусы, у которых хранилищем наследственной информации служат молекулы РНК (а не ДНК, как у всех прочих организмов), и у них есть специальные ферменты, которые умеют осуществлять обратную транскрипцию, то есть переписывать информацию из РНК в ДНК. Созданная таким путем ДНК встраивается в хромосомы клетки–хозяина и размножается вместе с ними. Поэтому с подобными РНК-вирусами очень трудно бороться (вирус ВИЧ относится к их числу). Но вот обратной трансляции — переписывания информации из белков в РНК — не обнаружено и по сей день. По–видимому, такого явления в природе и вправду не существует.

Согласно современным представлениям, перед каждым клеточным делением все молекулы ДНК в клетке удваиваются: специальные белки–ферменты синтезируют точные копии имеющихся ДНК, которые потом распределяются между дочерними клетками. Однако при копировании иногда возникают ошибки — мутации. Если мутация возникает при образовании половой клетки, она, естественно, передаётся по наследству. Обычно считается, что такие мутации происходят совершенно случайно. Так возникает изменчивость, служащая материалом для естественного отбора. Но мутации могут происходить при делении любых клеток тела, а не только при образовании яйцеклеток и сперматозоидов. Такие мутации называются соматическими (от "сома" — тело) и приводят к возникновению участков измененных тканей. Соматические мутации могут быть вызваны различными воздействиями внешней среды. Генетика отрицает возможность наследования соматических мутаций. Считается, что изменения клеток тела (в том числе и мутации) не могут отразиться на генах половых клеток.

Но это происходит не во всех организмах. Оказалось, что у одноклеточных организмов широко распространён так называемый горизонтальный (неполовой) обмен генетическим материалом. Бактерии выделяют в окружающую среду фрагменты своей ДНК, могут поглощать такие фрагменты, выделенные другими бактериями (в том числе и относящимися к совершенно другим видам!), и "встраивать" эти кусочки чужого генома в свой собственный.

Один из способов горизонтального (неполового) обмена генами, от которого не защищены даже многоклеточные, — это вирусный перенос. Известно, что ДНК вируса (или особая ДНК, которая синтезируется на базе РНК вируса) может встраиваться в геном клетки–хозяина, а потом снова отделяться от него и формировать новые вирусные частицы, которые могут заражать другие клетки. При этом вместе с собственной ДНК вирус может случайно "захватить" кусочек ДНК хозяина и таким образом перенести его в другую клетку, в том числе — и в клетку другого организма. Иногда, когда заражение происходит уже после оплодотворения, во время внутриутробного развития, вирусная инфекция передаётся потомству и часто возникает ситуация, когда зародыш несёт вирусную ДНК не только в соматических, но и в половых клетках, и таким образом белок, кодируемый кусочком ДНК хозяина, передаётся по наследству.

Недавно обнаружен и вне- или эпигенетический («над–генетический») способ наследования приобретенных изменений. Оказалось, что в процессе жизнедеятельности к молекулам ДНК в клетках (в том числе и в половых) специальные ферменты "пришивают" метильные группы (-CH3). Причем к одним генам метильных групп "пришивается" больше, к другим — меньше. Метилирование ДНК — это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК. Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции № 5 пиримидинового кольца. Метилирование резко нарушает функцию белков синтезирующих информационную РНК, и это один из источников ошибок при синтезе белка.

Обычно метилирование выключает данный ген из системы и белок на нем не может синтезироваться. Метилирование ДНК видимо, сохраняется при делении клетки. На этом основано существование разных клеток и тканей в организме животных. Этот механизм можно рассматривать как часть эпигенетической (когда информация записана не на ДНК) составляющей генома.

Распределение метильных групп по генам (так называемый рисунок метилирования) зависит от того, насколько активно тот или иной ген используется. Получается совсем как

1 ... 23 24 25 26 27 28 29 30 31 ... 91
Перейти на страницу:
На этой странице вы можете бесплатно скачать Статьи о природном земледелии (Плодородие почвы и агротехника) - Геннадий Федорович Распопов торрент бесплатно.
Комментарии
Открыть боковую панель