CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - Владо Дамьяновски
Шрифт:
Интервал:
Закладка:
Люминофорное покрытие монитора также обладает определенным послесвечением, то есть генерируемый лучом свет не исчезает немедленно вместе с исчезновением луча. Люминофор продолжает излучать свет еще в течение нескольких миллисекунд. Это значит, что ТВ-экран освещается яркой полосой, которая перемещается по нисходящей на определенной скорости.
Понятно, что это очень упрощенное описание того, что происходит с видеосигналом, когда тот попадает в монитор. Более подробно работу монитора мы обсудим в гл. 6, ну а информацию данной главы будем рассматривать как введение в принципы телевидения для читателей, не имеющих технического образования.
Решая, сколько строк и какую скорость регенерации изображения использовать, следует принимать во внимание многие факторы. Как это часто бывает в жизни, решения должны быть компромиссными — нужно найти компромисс между желанием передать максимум информации, позволяющей видеть точное изображение реальных объектов, и требованием передать ее экономно и большому количеству пользователей, которые могут позволить себе купить такой ТВ-ресивер.
Чем больше используется строк и больше кадров в секунду, тем более широкой будет полоса пропускания частот видеосигнала, что и будет диктовать стоимость телекамер, технологического оборудования, передатчиков и приемников.
Скорость обновления кадра, то есть число кадров в 1 секунду, была установлена исходя из инерционности зрительного восприятия человека и яркости ЭЛТ. Теоретически, идеальным вариантом были бы 24 кадра в секунду — из-за сочетаемости такого числа и с форматом кино, и с телевидением (широко использовались в первые годы существования телевидения). Однако фактически, это оказалось невозможно по причине высокой яркости, которую дает люминофор ЭЛТ и которая вызывала мерцание изображения (относительно расстояния от зрителя до экрана, см. рис. 4.3).
Рис. 4.3. Зависимость инерционности зрительного восприятия от яркости
В результате многочисленных экспериментов выяснилось, что для устранения мерцания требовалось, по крайней мере, 48 кадров в секунду. Такое количество кадров было бы удобно использовать, поскольку оно тождественно частоте кинопроектора, и, соответственно, можно легко конвертировать кино в телевизионный формат. Однако это число принято не было. Телеинженеры выбрали вариант 50 кадров в секунду по стандарту CCIR и 60 кадров в секунду по стандарту EIA. Эти цифры достаточно высоки, чтобы человеческий глаз не замечал мерцания, но еще важнее, что они совпали с промышленной частотой в 50 Гц, используемой во всей Европе, и частотой в 60 Гц, используемой в США, Канаде и Японии. Причиной тому была электронная схема ТВ-приемников, которые первоначально в большой степени зависели от промышленной частоты. Если бы был принят формат в 48 кадров, то разница в 2 Гц для CCIR и 12 Гц для EIA вызвала бы множество помех и перебоев в процессе развертки изображения.
Тем не менее, серьезной оставалась проблема, как воспроизвести 50 (PAL) или 60 (NTSC) кадров в секунду, реально не увеличивая начальную частоту сканирования камеры, равную 25 (то есть 30) кадрам в секунду. Дело не в том, что частоту сканирования камеры нельзя удвоить, а в том, что придется увеличить полосу пропускания видеосигнала, тем самым увеличив, как уже говорилось, стоимость электроники. К тому же, надо помнить о вещательных телеканалах, которые в этом случае должны быть шире, и, следовательно, меньше каналов было бы доступно для использования (без помех) в зоне выделенной частоты.
Все перечисленные факторы заставили инженеров использовать уловку, подобную мальтийскому механизму, используемому в кинопроецировании, благодаря чему 50 (60) кадров можно воспроизводить без реального увеличения полосы пропускания. Название этой уловки — чересстрочная развертка.
Рис. 4.4. Чересстрочная развертка, упрощенно
Вместо того, чтобы составлять изображения из 625 (525) горизонтальных строк прогрессивной разверткой, было решено чередовать развертку нечетными и четными строками. Другими словами, вместо того, чтобы посредством одной прогрессивной развертки 625 (525) строк воспроизводить один ТВ-кадр, этот кадр был разделен на две половины, одна из которых состояла только из нечетных линий, а вторая — только из четных. Они развертывались таким образом, что строки одного полукадра попадали точно между строк другого. Вот почему такая развертка называется чересстрочной. Все строки каждой половины — в случае CCIR сигнала их 312.5, в NTSC их 262.5 — формируют так называемое ТВ-поле. В системах CCIR и SECAM 25 нечетных полей и 25 четных полей, в системе EIA — по 30. В общей же сложности одно за другим, каждую секунду, быстро движутся 50 полей в секунду (в EIA 60).
Нечетное поле вместе с последующим четным составляет так называемый ТВ-кадр. Таким образом, каждый CCIR/PAL и SECAM сигнал состоит из 25 кадров в секунду, или 50 полей.
Каждый EIA/NTSC сигнал состоит из 30 кадров в секунду, что эквивалентно 60 полям.
Фактическая развертка на экране монитора начинается в верхнем левом углу со строки 1, затем переходит на строку 3, оставляя место между 1 и 3 строками для строки 2, которая должна появляться, когда начинается сканирование четных строчек.
Первоначально было трудно достичь точной чересстрочной развертки. Чтобы получить такие колебания, при которых четные строки попадали бы точно между нечетными, необходима была очень устойчивая электроника. Но вскоре было найдено простое и очень эффективное решение: выбор нечетного числа строк, причем каждое поле заканчивает развертку на половине строки. Сохраняя линейную вертикальную развертку (которую намного легче обеспечить), половина строки завершает цикл в середине верха экрана, таким образом, заканчивая 313-ую строку в CCIR (263-ую в EIA), после чего обеспечивается точное чередование четных линий.
Рис. 4.5. Зона кадрового (вертикального) синхроимпульса на экране осциллографа
Рис. 4.6. Кадровый синхроимпульс в деталях
Рис. 4.7. ТВ-сигнал в строчном режиме (со строчным синхроимпульсом)
Рис. 4.8. Кадровый синхроимпульс можно увидеть на мониторе с настройкой V-Hold
Когда электронный луч заканчивает сканирование каждой строки (на правой стороне ЭЛТ, если смотреть на нее), он получает строчный (горизонтальный) синхронизирующий импульс (или строчный синхроимпульс). Синхроимпульс встроен в видеосигнал и следует за видеоинформацией строки. Он сообщает лучу, когда следует прекратить вывод видеоинформации и быстро вернуться влево, к началу новой строки. Равным образом, поле завершается кадровым (вертикальным) синхроимпульсом, который «сообщает» лучу, что пора прекратить «писать» видеоинформацию и следует быстро вернуться к началу нового поля. Период обратного хода электронного сканирующего луча короче, чем фактический ход развертки, к тому же он позиционный, то есть, электроны в течение этих периодов синтеза изображения не выталкиваются.
В действительности, хотя система сканирования и обозначается как 525 ТВ-линий (или 625 в PAL), не все линии активны, то есть видимы на экране. На временной диаграмме ТВ-сигнала системы NTSC и PAL мы видим, что часть линий используется для выравнивания кадрового синхроимпульса, часть вообще не используется, а некоторые невидимы из-за эффекта усечения растра (помните, ни один монитор или телеприемник не показывает видеосигнал камеры на все 100 %, за исключением некоторых специальных мониторов).
Рис. 4.9. Тестовый генератор TPG-8 и осциллограмма его тестовой таблицы
Если мы учтем ошибки сканирования, толщину электронного луча и пр., то в системе CCIR (разумеется, та же логика применима к другим стандартам) мы насчитаем едва ли больше 570 активных ТВ-строк в PAL и не более 480 активных строк в NSTC. Более подробно ограничения видеосигнала рассматриваются далее.
Некоторые из «невидимых» строк весьма эффективно используются для других целей. В концепции PAL Teletext, например, CCIR рекомендует использовать строки 17, 18, 330 и 331 для размещения 8-разрядной цифровой информации. Декодер телетекста в вашем телевизоре или видеомагнитофоне может аккумулировать цифровые данные полей, которые содержат информацию о погоде, курсе обмена валют, результаты розыгрышей лотерей и т. д.
В некоторых системах NTSC строка 21 несет закрытые титры, т. е. информацию в виде субтитров.
Некоторые невидимые строки используются для вставки испытательных видеосигналов специальной формы, так называемых VITS (Video insertion test signal — сигнал испытательной строки), которые при измерении на приемнике дают ценную информацию о качестве передачи и приема в конкретной зоне.