Большая Советская Энциклопедия (ПР) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения x(s ) при комплексных значениях s . Риман высказал гипотезу о том, что все корни уравнения x(s ) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1 /2 . Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой , с не решенной ещё проблемой «близнецов» и другими проблемами аналитической теории чисел. Проблема «близнецов» состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших «близнецов» (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 —1 есть П. ч.; в нём 3376 цифр].
Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. — Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.
Простой производственный
Просто'й произво'дственный, временная приостановка работы по вине работника или по не зависящим от него причинам (поломка станка, отсутствие сырья, материалов, электроэнергии и т.д.).
В СССР за время П. п. не по вине рабочего или служащего заработная плата выплачивается в размере 1 /2 тарифной ставки повременной оплаты труда работника соответствующей квалификации, а в металлургической, горнорудной и коксовой промышленности — в размере 2 /3 тарифной ставки (месячная заработная плата в этих случаях не может быть ниже установленного минимального размера). На период освоения новых производств П. п. не по вине работника (как на новых, так и на действующих предприятиях) оплачивается из расчёта тарифной ставки повременщика соответствующего разряда. В тех отраслях народного хозяйства, где для рабочих-сдельщиков и рабочих-повременщиков установлены единые тарифные ставки, размер оплаты за время П. и. не по вине работника определяется законодательством СССР. Время П. п. по вине работника оплате не подлежит.
В случае П. п. рабочие и служащие переводятся (с учётом их специальности и квалификации) на другую работу на том же предприятии (в учреждении) на всё время П. п. либо на др. предприятие в той же местности на срок до 1 месяца. При переводе на нижеоплачиваемую работу вследствие П. п. за рабочими и служащими, выполняющими нормы выработки, сохраняется средний заработок по прежней работе, а за работниками, не выполняющими нормы или переведёнными на повременно оплачиваемую работу, сохраняется их тарифная ставка (оклад). Не допускается перевод квалифицированных рабочих и служащих на неквалифицированные работы.
Простой труд
Просто'й труд , труд работника, не имеющего квалификации , т. е. неквалифицированный труд. Всякий сложный труд может быть сведён к П. т., поскольку, по характеристике К. Маркса, «сравнительно сложный труд означает только возведенный в степень или, скорее, помноженный простой труд, так что меньшее количество сложного труда равняется большему количеству простого» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23, с. 53). Редукция (сведение) сложного труда к простому (см. Редукция труда ) позволяет определить стоимость товаров. В рабочем часе сложного труда заключено несколько часов П. т., поэтому квалифицированная рабочая сила (см. Квалифицированный труд ) создаёт в единицу времени большую стоимость, чем рабочая сила без квалификации.
При капитализме сведение сложного труда к П. т. совершается стихийно, путём приравнивания (в процессе обмена) стоимостей товаров, созданных этими видами труда. В условиях социалистического общества происходит планомерное соизмерение затрат сложного труда и П. т. В процессе производства товаров сведение сложного труда к простому осуществляется на основе действия закона стоимости (см. Стоимости закон ).
В. В. Мотылёв.
Простокваша
Простоква'ша, см. Молочнокислые продукты .
«Простор»
«Просто'р», литературно-художественный и общественно-политический иллюстрированный ежемесячный журнал. Орган СП Казахстана. Издаётся на русском языке в Алма-Ате с 1933 (до 1960 — под др. названиями). Журнал публикует художественные произведения, публицистику и очерки, критику, мемуары, материалы из литературного наследства. Тираж (1975) свыше 35 тыс. экз.
Лит.: Фоменко Л., Есть в Казахстане журнал..., «Литературная Россия», 1964, 23 окт.; Кузнецов П., Творческий поиск, «Правда», 1965, 25 апр.
Просторечие
Просторе'чие, слова, выражения, формы словообразования и словоизменения, черты произношения, имеющие оттенок упрощения, сниженности, грубости («башка», «кишка тонка»; «бечь» вместо «бежать»; «вчерась» вместо «вчера»; «мо'лодежь» вместо «молодёжь» и др.). П. характеризуется яркой экспрессией, стилистической сниженностью, граничит с разговорными элементами литературной речи, а также с диалектизмами, арготизмами, вульгаризмами. Состав и границы П. исторически изменчивы. В западноевропейской лингвистике термином «П.» (английское popular language, немецкое Volkssprache) обозначают конгломерат отклонений от «стандартного» языка: сленгизмы (см. Сленг ), модные фразы, прозвища и т.п. Стилистическая окрашенность П. делает его средством экспрессии в художественных произведениях («литературное П.») и в общеупотребительном литературном языке.
Лит.: Сорокин Ю. С., «Просторечие» как термин стилистики, в сборнике: Доклады и сообщения филологического института ЛГУ, в. 1, 1949; Хомяков В. А., Введение в изучение слэнга — основного компонента английского просторечия, Вологда, 1971 (есть лит.); Филин Ф. П., О структуре современного русского литературного языка, «Вопросы языкознания», 1973, № 2; Князькова Г. П., Русское просторечие второй половины XVIII в., Л., 1974; Partridge Е., A dictionary of slang and unconvenctional English, v. 1—2, L., 1970.
В. Д. Бондалетов.
Простоя коэффициент
Просто'я коэффицие'нт, показатель надёжности ремонтируемых технических устройств, характеризующий среднюю долю времени простоя устройства (из-за отказов) по отношению к суммарному времени простоя и работы.
Пространственная группа
Простра'нственная гру'ппа симметрии, федоровская группа, совокупность преобразований симметрии, присущих атомной структуре кристаллов (кристаллической решётке ). Вывод всех 230 П. г. был осуществлен в 1890—91 русским кристаллографом Е. С. Федоровым и независимо от него немецким математиком А. Шёнфлисом. Преобразованиями (операциями) симметрии называются геометрические преобразования различных объектов (фигур, тел, функций), после которых объект совмещается сам с собою. Поскольку кристаллическая решётка обладает трёхмерной периодичностью, то для пространственной симметрии кристаллов характерной является операция совмещения решётки с собой путём параллельных переносов в 3 направлениях (трансляций ) на периоды (векторы) а , b , с , определяющие размеры элементарной ячейки . Другими возможными преобразованиями симметрии кристаллической структуры являются повороты вокруг осей симметрии на 180°, 120°, 90° и 60°; отражения в плоскостях симметрии; операция инверсии в центре симметрии, а также операции симметрии с переносами (винтовые повороты, скользящие отражения и некоторые др.). Операции пространственной симметрии могут комбинироваться по определённым правилам, устанавливаемым математической теорией групп, и сами составляют группу .
П. г. не определяет конкретного расположения атомов в кристаллической решётке, но она даёт один из возможных законов симметрии их взаимного расположения. Этим обусловлена особая важность П. г. в изучении атомного строения кристаллов — любая из многих тысяч исследованных структур принадлежит к какой-либо одной из 230 П. г. Определение П. г. производится рентгенографически (см. Рентгеновский структурный анализ ). СП. г. не следует смешивать точечную группу (класс) симметрии кристаллов — совокупность преобразований симметрии, при которых одна точка кристалла остаётся неподвижной (трансляции отсутствуют). Точечная группа характеризует симметрию внешней формы кристаллов и анизотропию их свойств. Все 230 П. г. табулированы в специальных справочниках.