- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
1. Современная наука о природе, законы механики - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Один из основных результатов квантовой механики состоит в том, что эти две плотности р1 (х) и р2 (v) не могут быть выбраны независимо в том смысле, что они обе не могут быть сколь угодно узкими. Если мы возьмем «полуширины» кривых p1(х) и p2(v) и обозначим их соответственно [Dx] и [Dv] (см. фиг. 6.10), то природа требует, чтобы произведение этих двух полуширив было не меньше величины h/m, где m — масса частицы, a h — некоторая фундаментальная физическая постоянная, называемая постоянной Планка. Это соотношение записывается следующим образом:
[Dx][Dv]>=h/m (6.22)
и называется принципом неопределенности Гейзенберга.
Чтобы это соотношение выполнялось, частица должна себя вести очень курьезно. Вы видите, что правая часть соотношения (6.22) постоянна, а это означает, что если мы попытаемся «приколоть» частицу в каком-то определенном месте, то эта попытка окончится тем, что мы не сможем угадать, куда она летит и с какой скоростью. Точно также если мы попытаемся заставить частицу двигаться очень медленно или с какой-то определенной скоростью, то она будет «расплываться», и мы не сможем точно указать, где она находится.
Принцип неопределенности выражает ту неясность, которая должна существовать при любой попытке описания природы. Наиболее точное и полное описание природы должно быть только вероятностным. Однако некоторым физикам такой способ описания приходится не по душе. Им кажется, что о реальном поведении частицы можно говорить только, когда одновременно заданы импульсы и координаты. В свое время на заре развития квантовой механики эта проблема очень сильно волновала Эйнштейна. Он часто качал головой и говорил: «Но ведь не гадает же господь бог «орел — решка», чтобы решить, куда должен двигаться электрон!» Этот вопрос беспокоил его в течение очень долгого времени, и до конца своих дней он, по-видимому, так и не смог примириться с тем фактом, что вероятностное описание природы — это максимум того, на что мы пока способны. Есть физики, которые интуитивно чувствуют, что наш мир можно описать как-то по-другому, что можно исключить эти неопределенности в поведении частиц. Они продолжают работать над этой проблемой, но до сих пор ни один из них не добился сколько-нибудь существенного результата.
Эта присущая миру неопределенность в определении положения частицы является наиболее важной чертой описания структуры атомов. В атоме водорода, например, который состоит из одного протона, образующего ядро, и электрона, находящегося где-то вне его, неопределенность в местонахождении электрона такая же, как и размеры самого атома! Мы не можем поэтому с уверенностью сказать, где, в какой части атома находится наш электрон, и уж, конечно, не может быть и речи ни о каких «орбитах». С уверенностью можно говорить только о вероятности p(r)DV обнаружить электрон в элементе объема DV на расстоянии r от протона. Квантовая механика позволяет в этом случае вычислять плотности вероятности p(r), которая для невозмущенного атома водорода равна .
Это— колоколообразная функция наподобие изображенной на фиг. 6.8, причем число а представляет собой характерную величину радиуса, после которого функция очень быстро убывает. Несмотря на то что существует вероятность (хотя и небольшая) обнаружить электрон на большем, чем а, расстоянии от ядра, мы называем эту величину «радиусом атома». Она равна приблизительно 10-10м.
Если вы хотите как-то представить себе атом водорода, то вообразите этакое «облако», плотность которого пропорциональна плотности вероятности. Пример такого облака показан на фиг. 6.11.
Фиг. 6,11, Воображаемый атом водорода.
Плотность («белизна») облачка пропорциональна плотности вероятности обнаружения электрона.
Такая наглядная картинка, пожалуй, наиболее близка к истине, хотя тут же нужно помнить, что это не реальное «электронное облако», а только «облако вероятностей». Где-то внутри него находится электрон, но природа позволяет нам только гадать, где же именно он находится.
В своем стремлении узнать о природе вещей как можно больше современная физика обнаружила, что существуют вещи, познать которые точно ей никогда не удастся. Многому из наших знаний суждено навсегда остаться неопределенным. Нам дано знать только вероятности.
* Максвелл получил выражение p(v)= , где а — некоторая связанная с температурой постоянная, а С выбирается таким образом, чтобы полная вероятность была равна единице.
* Эти последние 97 экспериментов проводились следующим образом. Ящик, в котором находились 30 монет, энергично встряхивался; затем подсчитывалось число выпадений «орла».
Глава 7
ТЕОРИЯ ТЯГОТЕНИЯ
§ 1. Движение планет
§ 2. Законы Кеплера
§ 3. Развитие динамики
§ 4. Ньютонов закон тяготения
§ 5. Всемирное тяготение
§ 6. Опыт Кавендиша
§ 7. Что такое тяготение?
§ 8. Тяготение и относительность
§ 1. Движение планет
В этой главе речь пойдет об одном из самых далеко идущих обобщений, сделанных когда-либо человеческим разумом. Мы заслуженно восхищаемся умом человека, но неплохо было бы постоять некоторое время в благоговении и перед природой, полностью беспрекословно подчиняющейся такому изящному и такому простому закону — закону тяготения. В чем же заключается этот закон? Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. Математическая запись этого утверждения такова:
F=Gmm'/r2.
Если к этому добавить, что любое тело реагирует на приложенную к нему силу ускорением в направлении этой силы, по величине обратно пропорциональным массе тела, то способному математику этих сведений достаточно для вывода всех дальнейших следствий.
Но поскольку, как мы предполагаем, вы еще не столь талантливы, вооружим вас не только этими двумя аксиомами. Давайте вместе разберем следствия из них. Мы изложим вкратце историю открытия закона тяготения, остановимся на некоторых выводах из него и на его влиянии на историю, на загадках этого закона и на уточнении его Эйнштейном; мы «хотим еще обсудить связь закона тяготения с другими законами физики. Всего этого в одну главу не уложишь, но в надлежащих местах других глав мы снова будем возвращаться к этому.
История начинается с древних; наши предки наблюдали движение планет среди звезд и в конце концов поняли, что планеты движутся вокруг Солнца — факт, заново открытый позже Коперником. Немного больше труда потребовалось, чтобы открыть, как именно они вращаются. В начале XV столетия шли большие дебаты о том, действительно ли планеты обращаются вокруг Солнца или нет. У Тихо Браге на этот счет было свое представление, далекое от того, что думали древние: мысль его состояла в том, что все споры о природе движения планет разрешатся, если достаточно точно измерить положение планет на небе. Если измерения точно установят, как движутся планеты, то не исключено, что из двух точек зрения удастся отобрать одну. Это была неслыханная идея — чтобы открыть что-то, лучше-де проделать тщательные опыты, чем приводить глубокие философские доказательства. Следуя ей, Тихо Браге многие годы изучал положения планет в своей обсерватории на острове Фюн, близ Копенгагена. Он составил объемистые таблицы, впоследствии, после смерти Тихо, изученные математиком Кеплером. Из его данных Кеплер и извлек замечательные, очень красивые и простые законы, управляющие движением планет.
§ 2. Законы Кеплера
Прежде всего Кеплер понял, что все планеты движутся вокруг Солнца по кривой, называемой эллипсом, причем Солнце находится в фокусе эллипса. Эллипс — это не совсем овал, это особым образом точно определяемая кривая. Получить такую кривую можно, воткнув в фокусы по булавке, к которым привязана нить, натянутая карандашом. Выражаясь математически, это— геометрическое место точек, сумма расстояний которых от двух заданных точек (фокусов) постоянна. Или, если угодно, это — окружность, видимая под углом к своей плоскости (фиг. 7.1).
Фиг.7.1. Эллипс.
Другое наблюдение Кеплера состояло в том, что планеты движутся не с постоянной скоростью: поблизости от Солнца— быстрее, а удаляясь — медленнее. Более точно: пусть планета наблюдается в два последовательных момента времени, скажем на протяжении недели, и к каждому положению планеты проведен радиус-вектор. Дуга орбиты, пройденная планетой за неделю, и два радиус-вектора ограничивают некоторую площадь, заштрихованную на фиг. 7. 2.

