- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Новые космические технологии - Александр Фролов
Шрифт:
Интервал:
Закладка:
Создание гравимагнитного поля возможно не только в процессе движения или вращения частиц материи, но и путем вращения контура с электрическим током. Данный метод, в частности, описан Профессором Бутусовым К.П. в статье [42]. В 2002–2003 годах, под руководством К.П. Бутусова, мы провели ряд экспериментов в нашей лаборатории ООО «ЛНТФ» по изучению влияния возмущений эфира, образуемых при вращении соленоида, в котором создан электрический ток, на степень радиоактивности материала, рис. 103. Взвешивание пробных тел и другие исследования антигравитационных аспектов данной технологии не проводились.
Рис. 103. Схема эксперимента с вращающимся контуром токаВ данном эксперименте, изотопный радиоактивный материал помещался на расстоянии около одного метра от вращающегося контура с током. Исследовались два основных направления – осевое и радиальное, по отношению к ротору. Были обнаружены незначительные, но измеримые эффекты, подтверждающие влияние гравимагнитного поля на степень радиоактивности изотопных материалов. Отдельно можно отметить, что степень данных эффектов зависит от направления механического вращения, точнее сказать, от согласованного или встречного направления электрического тока в катушке относительно направления механического вращения катушки. В одном случае, скорость механического вращения катушки добавляется к скорости движения тока электронов в проводе, в другом случае – вычитается. Недостатком данного технического решения являются ограничения по скорости механического вращения, и ограничения по силе электрического тока, подаваемого во вращающийся контур через обычные угольные контактные щетки.
Известно, что мощные электрические токи можно легко создать в сверхпроводниковом материале. Соответственно, возбудив ток во вращающемся образце (диске) из сверхпроводящего материала, мы можем ожидать получение более мощных гравимагнитных эффектов. Данный метод аналогичен принципу, показанному на рис. 103, но ток в сверхпроводнике может быть намного сильнее, чем ток, который возможно создать в катушке обычного провода.
Для развития данной темы, в 2007 году, в ООО «Лаборатория Новых Технологий Фарадей» (ООО «Фарадей») были организованы эксперименты по изучению гравимагнитных эффектов, возникающих при вращении тока, созданного в диске из высокотемпературного сверхпроводящего материала.
Данные эффекты, как мы полагаем, должны быть связаны с флуктуациями плотности конденсата Бозе. Эксперименты проводились для подтверждения теоретических выводов Кристофера Бремнера (Dr. Christopher Bremner) о частотном спектре гравитационного поля [43]. В целом, экспериментальная работа была организована для проверки предположения о том, что в диапазоне 10-100 MHz, при определенных условия в сверхпроводящей среде, могут быть обнаружены аномалии массы (веса) пробных тел, помещаемый радом с сверхпроводниковым материалом, на который оказывалось специальное воздействие. В ходе работ, были сделаны важные выводы о природе гравитационных импульсов и способе их создания.
Применение сверхпроводящего материала целесообразно не только потому, что в нем можно создать мощный электрический ток, и он будет циркулировать без потерь длительное время. Другой важный аспект состоит в использовании особого состояния вещества, которое называют «конденсат Бозе».
Конденсат Бозе есть такое агрегатное состояние вещества, в котором большое число атомов находится в квантовом состоянии минимальной энергии. В таком состоянии, квантовые эффекты в веществе начинают проявляться на макроуровне, так как все атомы вещества ведут себя когерентно.
Когерентностью называют согласованность нескольких колебательных или волновых процессов. Именно синхронность колебаний частиц материи, излучающих фотоны строго когерентно, в одной фазе, обеспечивает качественное отличие лазеров от обычных источников света. Аналогии с лазерными технологиями позволяют предположить, что в эксперименте c веществом, находящимся в состоянии конденсата Бозе, будет создано более мощное гравимагнитное поле, чем в обычном проводнике, благодаря согласованному поведению частиц материи, возмущающих эфирную среду.
Экспериментальный подход в данной области исследований был ранее описан Евгением Подклетновым в его статье [44]. Им был найден эффект уменьшения массы (веса) на уровне 0.05 % – 0.07 % для невращающегося диска из высокотемпературной сверхпроводящей (ВТСП) керамики, находящегося в состоянии левитации в переменном магнитном поле. Вращение диска, в эксперименте Подклетнова, увеличивает эффект.
Важно отметить следующий факт: эффект Подклетнова был максимальный (от 2 % до 4 % изменения веса) при изменении скорости вращения диска. Это дает повод для размышлений об эфирной природе гравимагнитного эффекта, его связи с обычными явлениями инерции, возникающими при ускоренном движении тел, и связи с явлениями электромагнитной индукции, которые, в общем виде, трактуются, как реакция эфирной среды на изменения плотности энергии в некоторой области пространства.
Известен другой эксперимент Подклетнова, описанный в статье [45]. В данном случае, ВТСП диск был создан, как двухфазный материал: в рабочем режиме верхний слой диска находится в сверхпроводящем состоянии, а нижний – в обычном. Можно сказать, что это конструктивное решение обеспечивает пограничную область фазового перехода между двумя слоями.
Еще один важный шаг в понимании данного эффекта был сделан исследователем Моданезе (G. Modanese) [46], который впервые предположил, что механическое вращение высокотемпературного сверхпроводящего диска есть движение конденсата Бозе, аналогичное электрическому току в сверхпроводнике. Реакция эфирной среды на такое движение и есть гравимагнитное поле. Предположение Моданезе согласуется с нашими представлениями, поскольку именно когерентное поведение всех электронов в сверхпроводящем вращающемся диске отличает их поток от обычного электрического тока в проводящем диске, и от вращения электрически заряженного диэлектрического диска.
Следующий эксперимент Подклетнова и Моданезе был назван авторами «импульсный гравитационный генератор» [47]. Этот эксперимент имеет непосредственное отношение к оборонной тематике, поскольку он может быть использован для создания оружия большой дальности и поражающей силы.
Авторы создавали электрический разряд, ток достигал 50000 Ампер в импульсе, напряжением 1 миллион Вольт. Разряд попадал на «цель» из высокотемпературного сверхпроводникового (ВТСП) материала для того, чтобы создать «недиссипативный силовой луч» или, другими словами, «гравитационную волну», распространяющуюся вдоль линии разряда на неограниченное расстояние.
Данный эксперимент не имеет аналогов, особенно по значимости его результатов. Авторы заявили о том, что удалось получить силовое воздействие на расстоянии до цели более километра, причем, это был удар такой силы, что «был способен разрушить кирпичную стену».
В ряде стран идут исследовательские работы в данном направлении, например компания Boeing повторила эффект и доложила, что при разряде 2 Мегавольта, мишень получает удар с силой порядка 1 кг. Подробнее, читайте в журнале Rocket Science [48]. Работы над генератором гравитационных импульсов проводит компания Phantom Works, предприятие корпорации Boeing в Сиэтле. Глава Phantom Works Джордж Мюлнер (George Muellner) подтвердил интерес своей компании к работе Подклетнова, и заявил также, что, по их мнению, эта работа имеет солидное научное обоснование.
Статические эксперименты по теме «гравимагнетизм», главным образом, были нерезультативны, но нам важно отметить данные Джона Шнурера (John Schnurer) [49]. Эффект гравимагнитного воздействия на детектор (маятник) был обнаружен им для невращающегося ВТСП диска, левитирующего над постоянным магнитом, причем, только во время изменения фазы ВТСП материала, то есть, при его переходе из состояния сверхпроводимости в обычное состояние (нагрев выше Tk). Поскольку фазовый переход материала, обычно, занимает несколько секунд, то в это время может быть обнаружен эффект Шнурера.
Предлагается следующее объяснение данного эффекта: при левитации над постоянным магнитом, как известно, в сверхпроводящем диске уже существуют циркулирующие токи конденсата Бозе. Сам процесс левитации сверхпроводящих материалов над постоянными магнитами, или левитации магнитов над охлажденными сверхпроводящими материалами, есть простое отталкивание двух магнитных полей. В левитирующем состоянии, внешне неподвижный, стационарный ВТСП диск представляет собой контур с током, причем, током конденсата Бозе. Данный поток согласованных электронов вовлекает эфир в движение относительно кристаллической решетки вещества диска, причем, в намного большей степени, чем ток такой же силы, циркулирующий в обычном проводнике. При изменении фазового состояния вещества, конденсат Бозе превращается в обычный поток электронов, и ток быстро затухает. Скорость относительного движения эфира резко меняется, и в это время создается однократное изменение плотности эфира, что и генерирует импульс гравимагнитного поля, длительность которого равна длительности фазового перехода ВТСП материала из сверхпроводящего в обычное состояние.

