- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Удовольствие от Х - Стивен Строгац
Шрифт:
Интервал:
Закладка:
Неудивительно, что эти тенденции отражаются и в обучении. «Давайте обратимся к статистике»85, — увещевает в своей колонке газеты New York Times Грег Мэнкью, экономист из Гарвардского университета. «В учебной программе по математике в средней школе слишком много времени уделяется традиционным темам, таким как евклидова геометрия и тригонометрия. Эти полезные для обычного человека умственные упражнения, однако, малоприменимы в повседневной жизни. Учащимся было бы гораздо полезнее больше узнать о теории вероятности и статистике». Дэвид Брукс идет еще дальше86. В своей статье, посвященной дисциплинам, заслуживающим внимания для получения достойного образования, он пишет: «Возьмите статистику. Вот увидите, окажется, что знание того, что такое стандартное отклонение, вам очень пригодится в жизни».
Вполне вероятно, а еще неплохо разбираться в том, что такое распределение. Это первое, о чем я намерен поговорить. И хотел бы заострить на нем внимание, поскольку в этом заключается один из главных уроков статистики87: вещи кажутся безнадежно случайными и непредсказуемыми при рассмотрении их по отдельности, однако в совокупности в них обнаруживается закономерность и предсказуемость.
Возможно, вы видели демонстрацию этого принципа в каком-нибудь научном музее (если нет, видеоролики можно найти в интернете). Типичный экспонат представляет собой приспособление под названием доска Гальтона88, которая чем-то напоминает автомат для игры в пинбол, только без флипперов. Внутри его с равными интервалами располагаются ровные ряды штырьков.
Опыт начинается с того, что в верхнюю часть доски Гальтона запускаются сотни шариков. При падении они сталкиваются со штырьками и с равной вероятностью отскакивают то вправо, то влево, а затем распределяются внизу доски, попадая в отсеки одинаковой ширины. Высота столбика из шариков показывает, с какой вероятностью шарик может оказаться в данном месте. Большинство шариков размещаются примерно в середине, по бокам их уже меньше, и еще меньше — по краям. В общем, картина чрезвычайно предсказуема: шарики всегда образуют распределение в форме колокола, хотя предугадать, где окажется каждый отдельно взятый шарик, невозможно.
Каким образом отдельные случайности превращаются в общие закономерности? Но именно так действует случайность. В среднем столбике скопилось больше всего шариков потому, что, прежде чем скатиться вниз, многие из них совершат примерно одинаковое количество прыжков вправо и влево и в результате окажутся где-то посередине. Несколько одиноких шариков, расположившихся по краям, образуют хвосты распределения — это те шарики, которые при столкновении со штырьками отскакивали всегда в одном направлении. Такие отскоки маловероятны, поэтому по краям так мало шариков.
Подобно тому как местоположение каждого шарика определяется суммой множества случайных событий, многие явления в этом мире являются следствием множества мелких обстоятельств и тоже подчиняются колоколообразной кривой. По этому принципу работают страховые компании. Они с высокой точностью могут назвать количество своих клиентов, которые умирают каждый год. Однако не знают, кому именно не повезет на этот раз.
Или возьмем, к примеру, рост человека. Он зависит от бесчисленного количества случайностей, связанных с генетикой, биохимией, питанием и окружающей средой. Следовательно, велика вероятность, что при рассмотрении в совокупности рост взрослых мужчин и женщин будет представлять собой колоколообразную кривую89.
В одном блоге под названием «Ложные данные, которые люди сообщают о себе в интернете» статистическая служба сайта знакомств OkCupid90 недавно опубликовала график роста своих клиентов или, скорее, указанных ими значений. Обнаружилось, что показатели роста представителей обоих полов, как и ожидалось, образуют колоколообразную кривую. Однако удивительно то, что оба распределения были примерно на два дюйма смещены вправо относительно ожидаемых значений.
Таким образом, либо рост клиентов, опрошенных компанией OkCupid, превышает средний, либо при описании себя в интернете они прибавляют к своему росту еще пару дюймов.
Идеализированной версией подобных колоколообразных кривых является то, что математики называют нормальным распределением. Это одно из важнейших понятий в статистике, имеющее теоретическое обоснование. Можно доказать, что нормальное распределение возникает при сложении большого количества мелких случайных факторов, причем каждый из них действует независимо от других. И многие события происходят именно таким образом.
Но не все. И это второй пункт, на который я хотел бы обратить внимание. Нормальное распределение не такое уж вездесущее, как кажется. На протяжении сотни лет, и особенно в последние несколько десятилетий, ученые и специалисты в области статистики отмечают существование множества явлений, отклоняющихся от этой кривой и следующих собственному графику. Любопытно, что подобные типы распределений практически не упоминаются в учебниках по элементарной статистике, а если и встречаются, то обычно рассматриваются как некие патологии. Это странно. Я попытаюсь объяснить, что многие явления современной жизни приобретают больший смысл при условии понимания этих «патологических» распределений. Это новая нормальность.
Возьмем, к примеру, распределение размеров городов в США. Вместо того чтобы скапливаться вокруг некоей средней величины колоколообразной кривой, подавляющее большинство городов имеют небольшой размер и, следовательно, скапливаются в левой части графика.
И чем больше население города, тем реже такие города встречаются. Иначе говоря, в совокупности распределение будет представлять собой скорее кривую в форме буквы L, чем колоколообразную кривую.
И в этом нет ничего удивительного. Все знают, что мегаполисов гораздо меньше, чем маленьких городов. Хотя это не так очевидно, размеры городов подчиняются простому красивому распределению — если посмотреть на них в логарифмическом масштабе.
Будем считать, что различие между двумя городами одно и то же, если их население отличается в одно и то же число раз (подобно тому как две любые клавиши рояля, отстоящие на октаву, всегда разнятся вдвое по частоте). И сделаем то же самое на вертикальной оси.
Теперь данные располагаются на кривой, представляющей собой почти идеальную прямую линию. Исходя из свойств логарифмов, нетрудно вывести, что исходная L-образная кривая представляет собой степенную зависимость, которая описывается функцией вида
где x — население города, у — количество городов, имеющих такой размер, с — константа, а показатель степени a (показатель степенной зависимости) определяет отрицательный наклон прямой линии.
Степенные распределения91 имеют некоторые нелогичные, с точки зрения традиционной статистики, свойства. Например, в отличие от нормального распределения, их моды, медианы и средние значения не совпадают из-за скошенной асимметричной формы L-образных кривых. Президент Буш извлек из этого немалую пользу, заявив в 2003 году, что сокращение налогов позволило каждой семье сэкономить в среднем 1586 долларов92. Хотя математически это верно, здесь он к своей выгоде взял за основу среднее значение вычета, под которым скрывались огромные вычеты в сотни тысяч долларов, полученные 0,1% богатейшего населения страны. Известно, что «хвост» в правой части распределения дохода следует степенной зависимости, и в подобной ситуации использование средней величины вводит в заблуждение, поскольку она далека от своего реального значения. В действительности большинству семей вернули менее 650 долларов. В данном распределении медиана значительно меньше, чем среднее значение.
Этот пример демонстрирует важнейшее свойство распределений степенной зависимости: они имеют «тяжелые хвосты» по сравнению по крайней мере с маленькими «жидкими хвостиками» нормального распределения. Подобные большие хвосты хотя и редкость, но встречаются чаще в распределениях данных, чем обычные колоколообразные кривые.
В «черный понедельник», 19 октября 1987 года, промышленный индекс Доу-Джонса упал на 22%. По сравнению с обычным уровнем нестабильности на фондовом рынке это падение составило более двадцати стандартных отклонений. Согласно традиционной статистике (в которой используется нормальное распределение), подобное событие практически невозможно: его вероятность составляет менее чем один случай на 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 (10 в 50 степени). Однако это произошло — поскольку колебания цен на фондовом рынке93 не соответствовали нормальному распределению. Для их описания лучше подходят распределения с «тяжелым хвостом».

