Яды и противоядия - Гдаль Оксенгендлер
Шрифт:
Интервал:
Закладка:
Hb2 + CO HbCO + O2
или Hb + СО HbСО.
Образующийся патологический комплекс карбоксигемоглобин (НbСО) не способен присоединять к себе кислород. При этом в молекуле гемоглобина СО соединяется с атомами железа (карбонил?), вытесняя кислород. Понятно, что одна молекула гемоглобина (точнее, 4 ее гема) может присоединить до 4 молекул СО.
Кровь весьма интенсивно поглощает окись углерода из-за высокого ее химического сродства к гемоглобину. Оказалось, что окись углерода примерно в 250 раз более активно связывается с гемоглобином, чем кислород. Иными словами, в конкуренции за гемоглобин окись углерода имеет выраженное преимущество перед кислородом. Расчет показывает, что при содержании в воздухе 0,07% СО и 21% О2 количество образующегося в крови НbO2 становится равным количеству НbСО. Такое равновесие может установиться, если во вдыхаемом человеком воздухе концентрация окиси углерода, близкая к 0,07% будет поддерживаться в течение многих часов (по некоторым данным, нескольких суток). Вот почему небольшие количества окиси углерода, в том числе эндогенной, могут оказаться опасными при длительном воздействии на организм в замкнутых пространствах. Надо еще иметь в виду, что диссоциация карбоксигемоглобина происходит очень медленно (в 3500 раз медленнее, чем диссоциация оксигемоглобина), и это также способствует его накоплению в крови.
Чем выше концентрация СО в воздухе, тем быстрее достигается опасное для жизни содержание карбоксигемоглобина в крови, составляющее 50% и более по отношению ко всему гемоглобину (рис. 13). Соотношение между количеством в крови НbСО и НbО2, с одной стороны, и концентрациями СО и О2 во вдыхаемом воздухе — с другой, принято оценивать с помощью константы Дугласа:
Эта величина, которая получила также название коэффициента отравления, показывает, что количество образующегося карбоксигемоглобина прямо пропорционально парциальному давлению окиси углерода и обратно пропорционально парциальному давлению кислорода. С другой стороны, чем больше во вдыхаемом воздухе (и следовательно, в кровеносном русле) кислорода, тем меньше образуется НbСО и тем быстрее он диссоциирует.
Рис. 13. График токсичности окиси углерода (Франке, 1973). По оси ординат — содержание HbCO в крови, об. %; по оси абсцисс — время, чПо данным различных авторов, величина К для крови человека колеблется от 204 до 279, т. е. во столько раз скорость образования НbСО превосходит скорость образования НbO2.[142] Однако помимо парциального давления интенсивность поглощения кровью окиси углерода зависит также от длительности ее воздействия на организм и величины легочной вентиляции (минутного объема дыхания). В этой связи определенный интерес представляет формула, предложенная Лилиенталем (1946 г.):
% НbСО = pCO·t·υ·0,05,
где рСО — парциальное давление окиси углерода в мм рт. ст.; t — время воздействия в минутах; υ — минутный объем дыхания, т. е. произведение глубины вдоха в литрах на число вдохов за 1 мин.
Итак, механизм действия окиси углерода определяется блокированием дыхательной функции гемоглобина и развитием вследствие этого гемического, или кровяного, типа кислородной недостаточности. Но степень интоксикации окисью углерода возрастает в связи с тем, что образовавшийся НbСО тормозит кислородную функцию нормального гемоглобина: в присутствии НbСО реакция диссоциации оксигемоглобина (НbO2Hb+O2) замедляется и потому еще больше снижается поступление кислорода к клеткам. Вот почему НbСО, уменьшая поглощение кровью кислорода в легких, в то же время затрудняет разгрузку HbO2 в тканях. По-видимому, в этом следует искать объяснение случаев развития тяжелых интоксикаций при сравнительно небольшом количестве НbСО в крови (до 30%).
Поскольку химическое сродство к двухвалентному железу является основной причиной взаимодействия окиси углерода с гемоглобином, можно полагать, что и другие хромопротеиды, содержащие в своих молекулах ионы Fe2+, должны реагировать с этим ядом. Теперь уже не вызывает сомнений, что такого рода реакции могут в значительной степени влиять на течение интоксикаций. Имеется много экспериментальных данных, показывающих, что острые тяжелые отравления окисью углерода сопровождаются нарушением процессов потребления кислорода клетками. В основе этих нарушений лежит прежде всего блокирование ядом железосодержащих ферментов — цитохромов и цитохромоксидазы.[143] Следовательно, при воздействии СО к гипоксии кровяного типа присоединяется тканевая гипоксия, в еще большей степени отягчающая течение интоксикации угарным газом. У отравленного отмечаются признаки нарастающего поражения центральной нервной системы: головная боль, головокружение, нарушение координации движений и рефлекторной сферы, а также ряд сдвигов психической деятельности, напоминающих алкогольное опьянение (эйфория, утрата самоконтроля, нецелесообразные поступки и т. п.). Характерно покраснение кожи пораженных. Когда количество НbСО в крови превышает 50–60%, развиваются судороги, утрачивается сознание и, если не принять экстренные меры, человек может погибнуть вследствие остановки дыхания и работы сердца.
Кислород как антидот
Уже из приведенной реакции окиси углерода с окси-гемоглобином следует, что повышение в дыхательной среде парциального давления кислорода будет ускорять диссоциацию карбоксигемоглобина и выведение СО из организма. Иными словами, обратимость взаимодействия окиси углерода с гемоглобином позволяет предсказать направление его реактивирования. И хотя здесь эффективным конкурентным антагонистом токсичного агента является естественный и постоянно необходимый организму элемент внешней среды кислород, он с достаточным основанием может быть назван антидотом.
Лечебное действие кислорода при отравлении даже смертельными концентрациями угарного газа поражает своей быстротой: находившийся на грани гибели человек при вдыхании кислорода или кислородно-воздушной смеси уже через несколько минут возвращается к жизни. Особенно эффективна кислородотерапия в сочетании со стимуляцией дыхания, ибо только при полноценном дыхательном акте можно добиться максимального поступления кислорода в организм. Это достигается как с помощью фармакологических средств (лобелии, цититон, коразол и др.) так и различных приемов искусственного дыхания.
Известно, что углекислота является физиологическим возбудителем дыхательного центра — группы нервных клеток продолговатого мозга, управляющих актом дыхания. Вот почему усилить работу легких можно также посредством ингаляций карбогена, который представляет собою углекислотно-кислородную смесь, содержащую от 3 до 7% СО2. Ряд токсикологов подчеркивает, что при увеличении в крови парциального давления СО2 облегчается процесс диссоциации НbСО в эритроцитах и HbO2 в тканях. Последнее особенно важно, так как тем самым облегчается кислородная функция свободной от яда части кровяного пигмента.[144]
Интересно отметить, — что предварительная ингаляция кислорода способствует созданию резистентности организма к окиси углерода. Это очень убедительно демонстрирует следующий опыт. Если одну мышь поместить в литровую колбу, заполненную кислородом, а вторую — в такую же колбу с атмосферным воздухом и в обе колбы ввести по 25 мл окиси углерода, то через несколько десятков секунд можно наблюдать молниеносно протекающую интоксикацию с судорогами и быструю гибель второй мыши, в то время как первая мышь не проявляет никаких признаков отравления в течение длительного времени. Хотя этот опыт впервые был продемонстрирован более полувека назад, до настоящего времени нет достаточно удовлетворительного объяснения его результатов. При дыхании в атмосфере чистого кислорода количество его, растворенное в плазме крови, значительно возрастает, и это, по-видимому, тормозит реакцию образования карбоксигемоглобина: кислород, подобно буферу, каким-то образом защищает гемоглобин от СО. Как бы то ни было, даже кратковременное вдыхание кислорода может способствовать предупреждению интоксикации угарным газом, например когда предстоит выполнение работы в отравленной атмосфере.
Гипербарическая оксигенация при отравлениях окисью углерода
Но наиболее действенным и перспективным при отравлениях окисью углерода надо признать применение кислорода под избыточным давлением. Этот метод лечения с использованием специальных компрессионных камер, получивший название гипербарической оксигенации (ГБО), достаточно хорошо зарекомендовал себя на практике. Каковы же его физиологические обоснования?
Артериальная кровь здорового человека при нормальном барометрическом давлении насыщена кислородом на 96–98%; при этом количество содержащегося в ней кислорода достигает 19,4 объемных процентов (об.%). Иными словами, каждые 100 мл крови транспортируют 19,4 мл кислорода, из которых 19,1 мл приходится на кислород, химически связанный с гемоглобином, и только 0,3 мл — на кислород, растворенный в плазме. Следовательно, в естественных условиях жизнедеятельности поддержание кислородного баланса обеспечивается в организме главным образом гемоглобином, а значение растворенного в плазме кислорода в обменных процессах ничтожно.