- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон
Шрифт:
Интервал:
Закладка:
Итак, число пи мы называем иррациональным. Его нельзя представить в виде дроби двух целых чисел – наподобие ⅔ или 18/11. Однако математики древности, не подозревавшие о существовании иррациональных чисел, определяли число пи приблизительно в виде дробей – 25/8 (вавилоняне, около 2000 г. до н. э.) или 256/81 (египтяне, около 1650 г. до н. э.) Затем, уже около 250 г. до н. э., греческий математик Архимед, проделав трудоемкие геометрические построения, нашел не одну дробь, а две – 223/71 и 22/7. Архимед понимал, что точное значение пи, которое сам он не сумел найти, лежит где-то посередине.
В Библии также содержится примерная оценка числа пи – если учесть научные достижения того времени, можно сказать, довольно грубая. При описании убранства храма царя Соломона читаем: «И сделал литое из меди море, – от края его до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (III Царств, 7:23). То есть диаметр составлял 10 единиц, а окружность 30 – такое могло быть лишь в том случае, если бы пи равнялось трем. Прошло три тысячи лет, и в 1897 году нижняя палата законодательного органа штата Индиана издала законопроект, согласно которому в «Штате верзил», как принято называть Индиану, «диаметр и окружность относятся как пять четвертей к четырем» – то есть число пи в точности равно 3,2.
Однако оставим в стороне законодателей, которые были зациклены на десятичных дробях. Даже величайшие математики, в том числе великий персидский ученый IX века Мухаммад ибн Муса аль-Хорезми, чье имя увековечено в слове «алгоритм», и даже сам Ньютон, упорно пытались повысить точность вычисления пи. Разумеется, огромный рывок в решении этой задачи был достигнут с появлением электронных вычислительных машин, то есть компьютеров. К началу XXI века количество известных цифр числа пи перешло отметку в триллион, превысив точность, необходимую для любого мыслимого применения этого числа в физике, если не считать исследования, будет ли когда-нибудь эта последовательность похожа на случайную (фанаты числа пи интересуются даже этим).
* * *Ньютон внес в науку куда более существенный вклад, нежели вычисление числа пи: это, конечно, три фундаментальных закона движения и один закон всемирного тяготения. Все четыре закона впервые были сформулированы в основополагающем труде Ньютона «Philosophiæ Naturalis Principia Mathematica» или просто «Principia» («Начала»), увидевшем свет в 1687 году.
До «Начал» Ньютона ученые, занимавшиеся наукой, которая тогда называлась «механика», а впоследствии – «физика», просто описывали, что видели, уповая на то, что в следующий раз все произойдет примерно так же. Однако, вооружившись ньютоновыми законами движения, они получили возможность описывать соотношения между силой, массой и ускорением при любых условиях. В науке появилась предсказуемость. Как и в жизни в целом.
В отличие от первого и третьего законов, второй закон Ньютона представляет собой уравнение:
F = m aВ переводе на простой человеческий язык это означает, что равнодействующая сила F, прилагаемая к телу данной массы m, приведет к тому, что это тело будет двигаться с ускорением а. В переводе на еще более простой человеческий язык – чем больше сила, тем больше ускорение. И шагают они нога в ногу: если удвоить силу, действующую на тело, ускорение тоже удвоится. Масса тела служит в уравнении постоянной, позволяющей вычислить, какого именно ускорения следует ожидать при той или иной силе.
А что если масса тела не постоянна? Запусти ракету – и ее масса будет падать по мере расхода топлива. А теперь смеха ради представим себе, что масса меняется, даже если не отбирать у тела составляющее его вещество. Это происходит в рамках специальной теории относительности Эйнштейна. В ньютоновой Вселенной масса любого тела принадлежит ему на веки вечные. Во Вселенной, где правит относительность Эйнштейна, у тел есть неизменная «масса покоя» (она же «масса» из уравнений Ньютона), к которой прибавляется все новая и новая масса в соответствии со скоростью движения тела. Происходит вот что: если ускорить тело во Вселенной Эйнштейна, его сопротивление ускорению повышается, а в уравнении это проявляется как увеличение массы тела. Об этих «релятивистских» эффектах Ньютон знать не мог, поскольку они становятся заметны только при скоростях, сопоставимых со скоростью света. Для Эйнштейна они означали, что на сцену выходит еще одна постоянная – скорость света. Она заслуживает отдельного рассказа – но это как-нибудь в другой раз.
* * *Ньютоновы законы движения, как и многие другие физические законы, очень просты и понятны. Закон всемирного тяготения несколько сложнее. Согласно этому закону, сила гравитационного притяжения между двумя любыми телами – будь то пушечное ядро и Земля или Земля и Луна, два атома или две галактики – зависит только от масс этих двух тел и расстояния между ними. А точнее, сила тяготения прямо пропорциональна произведению масс взаимодействующих тел и обратно пропорциональна квадрату расстояния между ними. Эти пропорции позволяют понять, как устроена природа: если сила гравитационного притяжения между двумя телами на одном расстоянии равна некоей величине F, то при удвоении расстояния она равна одной четверти F, а при утроении – одной девятой F.
Однако этих сведений недостаточно, чтобы посчитать точное значение силы. Нужна постоянная – в данном случае так называемая гравитационная постоянная G.
Открытие соотношения между массой и расстоянием было одним из гениальных открытий Ньютона, но измерить значение постоянной G Ньютон никак не мог. Для этого ему пришлось бы знать все остальные величины в уравнении, и тогда G была бы полностью определена. Однако во времена Ньютона знать все остальные величины было невозможно. Измерить массы двух пушечных ядер и расстояние между ними проще простого, однако сила взаимного притяжения у них так мала, что ее не могли зарегистрировать никакие тогдашние приборы. Можно было бы измерить силу притяжения между ядром и Землей – но никто не знал в точности массу Земли. Так было более ста лет после публикации «Начал», до самого 1798 года, когда Генри Кавендиш, английский физик и химик, сумел вычислить G с достаточной точностью. Для этого он проделал опыт, ставший знаменитым: собрал прибор, основная часть которого представляла собой что-то вроде гантели из пары свинцовых шариков примерно по пять сантиметров в диаметре. Гантель была подвешена на тонкой вертикальной струне за середину, так что вся конструкция могла вращаться туда-сюда. Все это Кавендиш поместил в воздухонепроницаемый кожух, а снаружи к нему поднес (наискосок относительно гантели) два больших свинцовых шара – почти по 30 сантиметров в диаметре. Гравитационное воздействие внешних шаров должно было потянуть гантель и скрутить струну, на которой она висела. Самое точное измерение, которое получил Кавендиш, с трудом позволяло определить величину G в виде четырех десятичных знаков на конце целой цепочки нулей. В кубических метрах на килограмм на секунду в квадрате это значение составило 0,00000000006754.
Придумать подходящую установку для эксперимента было совсем не просто. Гравитация так слаба, что ее практически не уловить, и ее проявления в ходе эксперимента вполне могло затереть даже легчайшее дуновение воздуха внутри лабораторного кожуха. В конце XIX века венгерский физик Лоранд Этвеш построил новый, усовершенствованный аппарат Кавендиша и несколько повысил точность G. Проделать этот опыт так трудно, что даже сейчас G удается вычислить лишь с точностью до нескольких дополнительных знаков после запятой. Самые свежие результаты получены в результате экспериментов, которые провели Йенс Гундлах и Стивен Мерковиц в Вашингтонском университете в Сиэттле. Они видоизменили установку и получили значение 0,000000000066742. То, что гравитация очень слаба, никакое не преувеличение: как отмечают Гундлах и Мерковиц, сила гравитации, которую им нужно было измерить, эквивалентна весу одной-единственной бактерии!
Зная G, можно вывести самые разные величины – и, в частности, массу Земли, что и составляло конечную цель Кавендиша. По оценкам Гундлаха и Мерковица, она составляет около 5,9722 × 1024 килограммов, и эта оценка за прошедшие 15 лет уже почти не поменялась.
* * *Многие физические постоянные, открытые за последние сто лет, связаны с силами, влияющими на субатомные частицы – а в этом царстве правит не точность, а вероятность. Самую важную постоянную открыл в 1900 году немецкий физик Макс Планк. Постоянная Планка, которую принято обозначать буквой h, легла в основу квантовой механики, однако Планк обнаружил ее, когда исследовал на первый взгляд скучное соотношение между температурой тела и диапазоном энергии, которую оно излучает.

