100 знаменитых изобретений - Владислав Пристинский
Шрифт:
Интервал:
Закладка:
В отличие от паровых двигателей, газовые двигатели не требовали разведения пара, обслуживать их было сложно. Но масса нового двигателя оставалась почти такой же, как и у паровой машины. Единица выработанной мощности двигателя обходилась в 7 раз дороже, чем у паровой машины. Только половина теплоты сгоревшего газа совершала полезную работу, т. е. коэффициент полезного действия двигателя составлял 0,04. Остальное уходило с отработавшими газами, тратилось на нагрев корпуса и отводилось в атмосферу. Когда частота вращения вала достигала 100 об/мин, зажигание становилось ненадежным, двигатель работал с перебоями. На охлаждение расходовалось до 120 м3 воды в час. Температура газа доходила до 800 °C. Перегрев вызывал заедание золотника. Несгоревшие частицы смеси засоряли каналы впуска-выпуска.
Причина низкой производительности двигателя заключалась в самом принципе его действия. Давление воспламененной смеси не превышало 5 кг/см2, а к концу рабочего хода снижалось втрое. Одноцилиндровый двигатель объемом 2 л при таком давлении, частоте вращения вала 100 об/мин и КПД 0,04 мог развивать мощность не более 0,1 кВт. Другими словами, ленуаровский двигатель был в тысячу раз менее производителен, чем двигатель нынешнего автомобиля.
Сделать газовый двигатель более эффективным удалось в 1876 году служащему коммерческой фирмы Николаю-Августу Отто из Кёльна совместно с Евгением Лангеном.
Полученный Отто патент был в 1889 году аннулирован, так как четырехтактный цикл якобы обосновал ранее француз Л. Бо-де-Роша. Лишь посмертно заслуги Отто признала мировая техническая общественность, цикл назвали его именем.
Наблюдая работу газового двигателя, Отто пришел к выводу, что сможет добиться более производительной работы, если будет зажигать смесь не на середине хода поршня, а в его начале. Тогда бы давление газа при сгорании смеси действовало на поршень в течение всего хода. Для наполнения цилиндра смесью до начала хода Отто поступил следующим образом: вращая маховик вручную, он наполнил цилиндр и включил зажигание лишь в тот момент, когда поршень вернулся в исходное положение. Маховик резко «взял» обороты, а до этого сгорание смеси задало ему лишь слабый толчок. Отто не придал значения тому, что смесь была сжата перед зажиганием, он считал улучшение процесса результатом продолжительного расширения смеси в процессе сгорания.
Отто понадобилось 15 лет, чтобы сконструировать экономичный двигатель с КПД, равным 0,15. Двигатель назвали четырехтактным, так как процесс в нем совершался в течение четырех ходов поршня и соответственно двух оборотов коленчатого вала. Золотник в нужный момент открывал доступ в цилиндр от запальной камеры, где постоянно горел газ. Происходило зажигание смеси. Золотниковое распределение и зажигание горелкой не применяются в современных двигателях, но цикл Отто полностью сохранился до наших дней. По этому принципу работает подавляющее большинство автомобильных двигателей.
Итак, при первом такте поршень удаляется от исходной «мертвой точки» – головки цилиндра, создавая в нем разрежение, при этом засасывается приготовленная особым прибором (карбюратором) горючая смесь. Выпускное отверстие закрыто. Когда поршень достигает нижней «мертвой точки», закрывается и впускное. При втором такте закрыты оба отверстия. Поршень, толкаемый шатуном, идет вверх и сжимает смесь. Третий такт – рабочий ход. В начале его происходит зажигание сжатой смеси. Движение поршня через шатун преобразуется во вращение коленчатого вала. Оба отверстия закрыты. Давление в цилиндре постепенно уменьшается до атмосферного. При четвертом такте маховик, получив импульс движения, продолжает вращаться, шатун толкает поршень и вытесняет отработавшие газы в атмосферу через открывшееся выпускное отверстие, впускное закрыто.
Инерции маховика хватает на то, чтобы поршень совершил еще три хода, повторяя четвертый, первый и второй такты. После них вал и маховик снова получают импульс. При пуске двигателя первые два такта происходят под действием внешней силы. Во времена Отто и еще в течение полувека маховик проворачивали вручную, а теперь его вращает электродвигатель – стартер. После первых рабочих ходов стартер автоматически отключается и двигатель работает самостоятельно.
Впускное и выпускное отверстия открывает и закрывает распределительный механизм. Своевременное воспламенение смеси обеспечивает система зажигания. Цилиндр может быть расположен горизонтально, вертикально или наклонно, процесс работы двигателя от этого не меняется.
К недостаткам двигателя Отто относят его тихоходность и большую массу. Увеличение числа оборотов вала до 180 в минуту приводило к перебоям в работе и быстрому износу золотника. Давление в цилиндре требовало мощного кривошипного механизма и стенок цилиндра, поэтому масса двигателя достигала 500 кг на 1 кВт/ч. Для размещения всего запаса газа нужен был огромный резервуар. Все это предопределило неудачу: газовый двигатель Отто, так же как и первый его вариант, был непригоден для установки на автомобиль, однако получил широкое распространение в стационарных условиях.
Двигатель внутреннего сгорания стал пригодным для применения на транспорте, после того как изобрели жидкое топливо, он приобрел быстроходность, компактность и легкость.
Наибольший вклад в его создание внесли технический директор завода Отто в Дойце Г. Даймлер и его ближайший сотрудник В. Майбах, позднее основавшие собственную фирму.
Поначалу Даймлера увлекало конструирование машины. Потом возникла мысль о постройке второго, третьего вариантов машины, исходя из опыта работы над предыдущей, и о ее продаже.
Но прежде чем конструировать и строить самодвижущуюся повозку, нужно было создать для нее двигатель.
Первый двигатель Даймлера годился и для транспортного, и для стационарного применения. Работал на газе и на бензине. Все позднейшие конструкции Даймлера рассчитаны исключительно на жидкое топливо. Скорость вращения вала двигателя, обеспечиваемую, в частности, интенсивным воспламенением смеси, Даймлер справедливо считал главным показателем работы двигателя на транспортной машине. Скорость вращения вала двигателя Даймлера была в 4–5 раз выпе, чем у газовых двигателей, и достигала 450–900 об/мин, а мощность на 1 л рабочего объема – вдвое больше. Соответственно могла быть уменьшена масса. Появился закрытый картер (кожух) двигателя, заполненный смазочным маслом и защищавший подвижные части от пыли и грязи. Охлаждению воды в окружающей двигатель «рубашке» способствовал пластинчатый радиатор. Для пуска двигателя служила заводная рукоятка. Теперь имелось все необходимые составляющие для создания легкого самодвижущегося экипажа – автомобиля.
Первые двигатели Бенца имели скорость вращения вала, не превышающую 400 об/мин. Кривошипный механизм был открытым, как у стационарных двигателей. Электрическое зажигание в двигателе было сходным с зажиганием современных двигателей.
Было сложно наращивать мощность двигателя: увеличение диаметра цилиндра влекло за собой возрастание сил, действующих на его стенки и на детали кривошипного механизма. А при увеличении длины хода поршня росли размеры кривошипа, и цилиндр было трудно разместить на автомобиле. Все это влекло за собой увеличение массы двигателя.
И у конструктора возникла мысль увеличить количество цилиндров. Даймлер сконструировал двухцилиндровые (V-образными) двигатели. В 1891 г. он построил первый 4-цилиндровый двигатель.
Количество цилиндров обеспечивало не только компактность двигателя при увеличении его мощности, но и обеспечивало плавность хода. Вместе с тем возрастала сложность конструкции двигателя.
К концу XIX в. 1-, 2-, 4-цилиндровые двигатели выпускались многими фирмами. Каждая фирма стремилась сделать свои цилиндры взаимозаменяемыми. Это позволило бы наладить массовое производство и упростить замену в случае повреждения. Головку цилиндра пытались сделать съемной, но трудно было обеспечить герметичность зазора. Тогда цилиндры стали отливать заодно с головкой, а для доступа к клапанам делали лючки с пробками. Рубашка водяного охлаждения была съемной.
Важную роль в двигателе играла система распределения, наполняющая цилиндры горючей смесью и очищающая их от газов. У первых двигателей впуск смеси в цилиндр осуществлялся автоматическим клапаном на стержне. Он открывался благодаря разрежению в цилиндре при впуске смеси, а все остальное время удерживался в закрытом положении пружиной и давлением в цилиндре. Выпускной клапан управлялся при помощи эксцентрика. Увеличение числа цилиндров привело к созданию кулачкового вала с приводом от коленчатого вала. В нужный момент кулачки приподнимали стержни клапанов, а при дальнейшем движении кулачка пружина удерживала клапан закрытым.