- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Цифровой журнал «Компьютерра» № 169 - Коллектив Авторов
Шрифт:
Интервал:
Закладка:
В 1994 году математик Питер Шор придумал первый квантовый алгоритм, у которого потенциально может быть практическое применение. Алгоритм Шора предназначен для факторизации чисел, то есть разложения их на простые множители. Именно его работоспособность проверял квантовый компьютер, раскладывавший на множители число 15.
Великие изобретения редко случаются без внешнего стимула. Успехам в освоении космоса мы обязаны гонке вооружений и напряжённым отношениям между СССР и США. Компьютеры появились на исходе Второй мировой войны для баллистических расчётов и взлома немецких шифров. Но ничуть не реже стимулом становилась не война, а крупная награда, привлекающая к решению важной задачилучшие умы человечества.
Факторизация чисел — это одна из тех задач, с которой традиционные компьютеры справляются с огромным трудом. Чем больше число, тем больше времени требуется для того, чтобы определить его множители. И не просто больше: количество шагов, необходимое для факторизации числа известными алгоритмами, экспоненциально растёт с каждым дополнительным разрядом и быстро переходит границы возможного.
На этом свойстве держится криптография с открытым ключом, которую используют для защиты финансовых данных в интернете или в электронной валюте Bitcoin. Чтобы вскрыть, например, шифр RSA, необходимо знать множители, из которых состоит открытый ключ. Поскольку ключом служит достаточно большое число, для того чтобы факторизовать его с помощью обычного компьютера, потребуются годы.
Когда та же задача решается на квантовом компьютере с помощью алгоритма Шора, время вычислений растёт не экспоненциально, а гораздо медленнее. Большие числа по-прежнему факторизуются дольше коротких, но не настолько долго, чтобы и пытаться не стоило.
Квантовый компьютер позволяет факторизовать число, состоящее из N разрядов, за N2 операций. Это означает, что появление достаточно мощных квантовых компьютеров сделает непригодными для использования многие популярные криптоалгоритмы.
Другой интересный пример — алгоритм Гровера, позволяющий найти нужный элемент в неотсортированном списке из N элементов, выполнив лишь N1/2 сравнений. На обычном компьютере для решения той же задачи потребовалось бы N сравнений.
Для наглядности предположим, что в списке миллион элементов. Обычному компьютеру, чтобы отыскать один из них, необходимо выполнить миллион сравнений. Квантовый компьютер, использующий алгоритм Гровера, обойдётся тысячью. Это не экспоненциальное ускорение, как в случае алгоритма Шора, но прибавка всё равно ощутима.
Суровая реальностьТри атома бериллия, используемые в качестве кубитовКвантовым алгоритмам требуется заметно меньше шагов для поиска ответа, чем их аналогам, работающим на традиционном компьютере. Кое-кто предполагает, что с помощью квантовых компьютеров удастся эффективно решать даже NP-полные задачи, но такое мнение нельзя назвать популярным. Впрочем, даже без NP-полных задач преимущества квантовых компьютеров очевидны. За чем же дело стало?
Слово «компьютер» обманчиво. Капризные и дорогостоящие квантовые установки, которые строят в лабораториях, не имеют с компьютерами ничего общего. Это не программируемые вычислительные машины. Слово «машина» едва ли подходит для их обозначения — по крайней мере, на этой стадии развития.
Поскольку квантовые эффекты проявляются лишь на микроуровне, экспериментаторам обычно приходится работать с отдельными атомами или элементарными частицами, что, мягко говоря, не так уж просто. Кубитами могут служить, например, ионы, подвешенные в электромагнитном поле.
Ионы не станут факторизовать числа лишь потому, что их назвали кубитами. Им попросту нечем это делать. Для выполнения квантовых операций требуется внешнее воздействие. Влиять на кубиты можно, например, с помощью лазера или микроволн. Легко понять, что с небольшим числом кубит таким методом ещё можно справиться, а вот дальше начнутся проблемы.
Дело осложняется тем, что любое взаимодействие между кубитами и окружающей средой может привести к декогеренции, которая делает продолжение работы невозможным. Чтобы избежать помех, квантовые компьютеры часто помещают в вакуум и охлаждают почти до абсолютного нуля, но это не особенно помогает.
Ренегаты и шарлатаныВ 2007 году канадский стартап D-Wave объявил о намерении выпустить первый коммерческий квантовый компьютер. Намерение подкрепили демонстрацией машины, которая, по уверениям разработчиков, насчитывала шестнадцать кубит.
На глазах у зрителей она решила головоломку судоку, вычислила идеальную комбинацию гостей на гипотетической свадьбе и обработала SQL-запрос в специальной версии MySQL. С этими задачами прекрасно справился бы и обычный компьютер, но презентация и не должна была потрясать воображение.
Воображение потрясало другое: наполеоновские планы D-Wave. К концу года компания намеревалась довести число кубит до 32, а к середине 2008 года впустить квантовый компьютер с 1024 кубитами.
Обещания D-Wave отличались от суровой реальности, хорошо знакомой всем, кто занимался исследованиями в области квантовых вычислений, как небо и земля. Скачок таких масштабов был бы чудом, а чудес, как известно, не бывает.
Скептицизм специалистов столкнулся с полным нежеланием D-Wave рассказывать, каким образом были достигнуты такие успехи. Напрашивается вопрос: а был ли мальчик? Действительно ли устройство, которым хвасталась компания, — это квантовый компьютер? Никаких доказательств этому не было. Развеять сомнения могли бы публикации разработчиков D-Wave в академических журналах, но их не было.
К D-Wave приклеился ярлык «шарлатаны», но компания продолжала работать. Чересчур оптимистичный план пришлось скорректировать. Машина, использующая, если верить D-Wave, 128 кубитов, появилась не в 2008, а лишь в 2011 году. Несколько месяцев назад разрядность довели до 512.
В 2009 году D-Wave и Google провели совместную презентацию. Хартмут Невен, видный специалист в области распознавания лиц, работающий в Google, рассказал об испытании самообучающегося алгоритма для выделения автомобилей на снимках Street View. По утверждению Невена, квантовое устройство D-Wave справилось с задачей лучше, чем традиционные компьютеры в дата-центрах Google.
Такое развитие событий немного озадачило скептиков. Результаты, которые обнародовал Невен, не доказывали, что в D-Wave построили настоящий квантовый компьютер, однако отмести их тоже было нельзя. Если D-Wave — это мошенники, то как же им удалось переманить на свою сторону совсем не глупых людей из Google?
В 2011 году корпорация Lockheed Martin, гигант военно-промышленного комплекса США, объявила о приобретении 128-кубитной машины D-Wave за 10 миллионов долларов. Можно было бы предположить, что покупка совершена из любопытства, однако история на этом не закончилась.
В марте 2013 года в Lockheed Martin решили купить следующую модель квантового компьютера D-Wave. Первая покупка не просто удовлетворила интерес компании — она доказала свою полезность. Получается, в обещаниях D-Wave всё же есть доля правды?
Правда D-WaveВ D-Wave в итоге пошли на попятную и опубликовали пару научных работ о своей машине. Попутно стало ясно, что это, во-первых, не квантовый компьютер в самом распространённом понимании этого слова, а во-вторых, кубиты, о которых идёт речь в рекламе компании, строго говоря, не вполне кубиты.
В основе машины D-Wave лежит охлаждённая до -273 градусов по Цельсию микросхема с решёткой, построенной из сверхпроводящих квантовых интерферометров. Именно их в компании называют кубитами. Значение кубитов D-Wave, как и значение кубитов в настоящем квантовом компьютере, может быть неопределённым, однако они не связаны между собой с помощью квантовой запутанности.
Машина D-Wave не годится для алгоритмов, которые используют квантовые вентили. Ни алгоритм Шора, ни алгоритм Гровера на ней не пойдут. Вместо этого она использует для работы совершенно иной принцип — так называемые адиабатические квантовые вычисления. Это значительно ограничивает её возможности, но позволяет не беспокоиться о декогеренции и других проблемах, сопровождающих обычные квантовые вычислители.
Адиабатические квантовые компьютеры представляют собой специализированные устройства, предназначенные для решения единственной задачи: поиска оптимального решения функции, которая определена энергетическим состоянием всех кубитов вместе. Выполнять операции над отдельными кубитами они не способны, но в данном случае этого и не требуется.
Эта оптимизационная задача имеет на удивление много реальных применений. В D-Wave использовали своё устройство для фолдинга белков, в Google учили его распознавать образы, а в Lockheed Martin приспособили машину для верификации критически важного программного обеспечения.
