Программирование игр и головоломок - Жак Арсак
Шрифт:
Интервал:
Закладка:
* Головоломка 29. Дихотомический поиск.
Это — совершенно известная задача. Вам предлагается упорядоченная таблица попарно различных элементов; например, в порядке возрастания. Вам предлагается, кроме того, другой элемент: его нужно разместить в таблицу.
Следовало бы уточнить (хоть это и не в моих правилах: обычно я предоставляю вам заботу об уточнении. В этой книге вовсе не я тот человек, который должен аккуратно работать…). Пусть a — таблица с n элементами, упорядоченная так, что
a[i] < a[i + 1] для 1 < i ≤ n,
и x — элемент, который нужно разместить. Его место
0, если x ≤ a[1],
i, если a[i] < x ≤ a[i + 1],
n, если a[n] < x.
Один сотрудник факультета Нотр-Дам де ла Пэ в Намюре изучил 18 программ, опубликованных различными авторами по всему свету и в каждой нашел хоть что-то, за что можно упрекнуть. Всякий раз, когда я получаю новую книгу по программированию (к счастью, я получаю не все), я смотрю, нет ли там случайно исследования этой задачи. Почти во всех случаях это так. Настоящий «ослиный мост»[16] информатики…
* Головоломка 30. Равенство «с точностью до пробелов».
Пусть даны две буквенные цепочки: a и b. Составьте программу, которая может сказать, совпадают ли эти цепочки с точностью до пробелов. Внимание: вы не имеете права изменять цепочки a и b, вы не имеете права порождать новые цепочки. Это запрещает вам удалить пробелы из обеих цепочек или копировать их, удаляя пробелы. Под равенством с точностью до пробелов нужно понимать, что обе цепочки должны быть образованы одними и теми же буквами в одном и том же порядке, если не учитывать пробелы. Такая задача встречается в системах, связанных с практической работой, с программами, потому что пробелы чаще всего рассматриваются в операторах и командах как незначащие.
Если вы находите это совершенно элементарным, вы можете изучить, являются ли данные цепочки обращениями друг друга с точностью до пробелов. Вы можете также увидеть, является ли цепочка палиндромом (т. е. совпадает со своим обращением) с точностью до пробелов, Так, палиндромами являются
А РОЗА УПАЛА НА ЛАПУ АЗОРА
АРГЕНТИНА МАНИТ НЕГРА
Попытайтесь получить правильную (это уж как минимум) и элегантную программу.
Головоломка 31. Анаграмма.
Еще одна головоломка, вопреки ее внешнему виду, Дело в том, чтобы сказать, являются ли две цепочки букв анаграммами друг друга (т. е. получаются ли они друг из друга перестановками букв). Эта задача имеет совершенно различный вид в зависимости от того, разрешите ли вы себе изменять обе цепочки или порождать новые цепочки, или нет. Выбор я предоставляю вам… Может быть, вы заметите, что различные решения следует оценивать в зависимости от соотношения между размерами цепочек и используемого алфавита. Подумайте о крайних случаях: алфавит из 26 букв и цепочка из 1000 символов; алфавит из 1000 символов (это вроде китайского…) и цепочка из 10 символов.
Головоломка 32. Анаграмма с точностью до пробелов.
Та же головоломка, но, кроме того, пробелы не считаются. Вы можете ее еще немного обобщить: являются ли две страницы текста анаграммами одна другой, не считая знаков препинания?
??* Головоломка 33. Переставить две части вектора.
Вам дана таблица a с n элементами. Требуется переставить части с номерами от 1 до m и от m + 1 до n (рис. 33).
Порядок элементов в каждой ив частой должен быть сохранен[17]. Вы не должны использовать вспомогательную таблицу, Каждый элемент должен быть перемещен не более одного раза.
Это — довольно любопытная задача, которая была предложена мне Давидом Грисом, и которую он исследовал в своей книге [GRI] Это — один из редких случаев, когда я не смог вывести программу из гипотезы рекуррентности, как я это обычно делал [ARS]. В данном случае я сначала придумал программу (ничего особенного, вы ее, конечно, прекрасно составите). И только после того — именно после того — я смог показать, почему эта программа работает правильно.
* Головоломка 34. Задача о равнинах.
Вам дается упорядоченная таблица каких-то элементов, например, телефонный справочник (где фамилии расположены в алфавитном порядке. Здесь мы не учитываем имен). В таблице могут встретиться омонимы (иначе говоря, последовательности из совпадающих элементов), как в телефонном справочнике. Требуется найти наиболее длинные омонимы: больше ли МАРТЫНОВых, чем СЕМЕНОВых?
Я использовал для этой головоломки название, данное ей в книге Давида Гриса [GRI]. Если вместо того, чтобы веять для иллюстрации таблицу фамилий, вы берете
таблицу чисел, расположенных в неубывающем порядке, то такая таблица составлена иэ участков возрастания, подъемов и ровных участков, «равнин». Тогда нужно найти наиболее длинную равнину.
Эта задача оказывается не вполне одной и той же в зависимости от того, ищете ли вы только наибольшую длину равнины (что делает Д. Грис) или ищете одновременно и длину ряда омонимов и сам наиболее часто встречающийся омоним (что предлагаю вам я).
G этой задачей связана неприятная для меня история. Я намеревался продумать эту задачу в Нанси также, впрочем, как и Давид Грис. Я довольно легко обнаружил два решения, различные по духу, но не по виду, что поставило передо мной задачи преобразования программ (каким образом различные отправные точки могут привести, с точностью до нескольких манипуляций, к одной и той же программе). Как и рассказывает в своей книге Давид Грис, я очень гордился своими решениями, пока не обнаружил в той же книге Д. Гриса решение, принадлежащее Майклу Гриффиту: его решение намного проще…
Сумеете ли вы найти простое решение?
??** Головоломка 35. Самая длинная возрастающая подпоследовательность.
Пусть дана таблица a из n каких-либо чисел (но если это может доставить вам удовольствие — из натуральных чисел. Это неважно). Подпоследовательность этой таблицы есть последовательность чисел, выделенная в порядке возрастания номеров. Более точно, последовательность
a[i1] a[i2] a[i3] … a[ip]
есть подпоследовательность последовательности а, если i1 < i2 < … < ip. (Числа идут в одном и том же порядке в таблице a и в ее подпоследовательности, но эта формулировка двусмысленна.)
Последовательность возрастает[18], если, кроме того,
a[i1] ≤ a[i2] ≤ a[i3] ≤ … ≤ a[ip].
Требуется выделить из a самую длинную возрастающую подпоследовательность. Вы имеете право использовать вспомогательные векторы.
Можно найти исследование этой задачи в нескольких книгах и на нее изведено немало чернил (да и мела тоже: я видел ее исследования в трудах международных семинаров). Кроме того, совершенно не одно и то же — довольствуемся ли мы определением максимальной длины и даже последнего члена самой длинной возрастающей подпоследовательности последовательности a (внимание: может случиться, что есть много таких подпоследовательностей одинаковой длины) или же мы хотим получить также список членов такой максимальной последовательности.
Иногда в условие вводят дополнительное ограничение: число требуемых операций должно быть порядка n * In(n). Я не уверен, что это действительное ограничение. Если вы найдете решение, то оно, скорее всего, будет обладать этим свойством.
??** Головоломка 36. Самое длинное слово.
Заглавие вводит в заблуждение… Однажды мы проводили экзамен у наших учеников в DEUG по составлению программы, которая сообщает, скрыто ли данное слово в данной фразе, иначе говоря, встречаются ли буквы данного слова в том же порядке в данной фразе. Так, в следующей фразе (взятой из «Ярмарки у скупцов» Жана Шарля):
«Je peux te donner lʼadresse dʼun excellent cireur de parquets: il se rend à domicile»
слово TONDEUSE скрыто (соответствующие буквы подчеркнуты), но ни слово GAZON (нет буквы G), ни слово DOMINATEUR (все буквы есть, но в неправильном порядке) не содержатся.
Но это не головоломка, это совсем просто (уж это точно…). Я спрашиваю вас о другом — найти, какое слово наибольшей длины скрыто одновременно в двух фразах. На самом деле, конечно, речь идет не о слове, а скорее о последовательности букв: какая наиболее длинная последовательность букв может быть обнаружена в одном и том же порядке в двух фразах. Если это может вам помочь, то вот другой пример из «Ярмарки у скупцов»: