- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (УП) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
В бесконечной пластине существуют два типа нормальных волн: волны Лэмба и сдвиговые нормальные волны. Плоская волна Лэмба характеризуется двумя составляющими смещений, одна из которых параллельна направлению распространения волны, другая перпендикулярна граням пластины. По характеру распределения смещений относительно средней плоскости пластины волны Лэмба делятся на симметричные и антисимметричные. Частный случай симметричной волны Лэмба — продольная волна в пластине, а антисимметричной — изгибная волна. В плоской сдвиговой нормальной волне смещения параллельны граням пластины и одновременно перпендикулярны направлению распространения волны. Простейший вид такой волны — нормальная волна нулевого порядка, в которой смещения одинаковы во всех точках поперечного сечения пластины.
В цилиндрических стержнях могут распространяться нормальные волны продольного, изгибного и крутильного типа, причём если толщина стержня мала по сравнению с длиной волны, то в нём может распространяться только по одной нормальной волне каждого типа.
В анизотропных средах (кристаллах) свойства У. в, и возможность её существования зависят от класса кристалла и направления распространения. В частности, чисто продольные и чисто сдвиговые волны могут распространяться только в кристаллах определённых симметрий (см. Симметрия кристаллов ) и по определённым направлениям, как правило, совпадающим с направлением кристаллографичесих осей. В общем случае в кристалле по любому направлению всегда распространяются У. в. с тремя различными скоростями: одна квазипродольная и две квазипоперечные волны, в которых преобладают соответственно продольные или поперечные смещения.
Из-за внутреннего трения и теплопроводности среды распространение У. в. сопровождается её затуханием с расстоянием (см. Поглощение звука ). Если на пути У. в. имеется какое-либо препятствие (отражающая стенка, вакуумная полость и т.д.), то происходит дифракция волн на этом препятствии. Частный случай дифракции — отражение и преломление У. в. на плоской границе двух полупространств.
В У в. напряжения пропорциональны деформациям (т. е. удовлетворяется Гука закон ). Если амплитуда деформации в волне столь велика, что напряжение превосходит предел упругости вещества, то при прохождении волны в веществе появляются пластические деформации и её называют упруго-пластической волной . В жидкости и газе аналогичную волну называют волной конечной амплитуды.
Лит.: Ландау Л. Д., Лифшиц Е. М., Теория упругости, 3 изд., М., 1965 (Теоретич. физика, т. 7); Кольский Г., Волны напряжения в твердых телах, пер. с англ., М., 1955; Морз Ф., Колебания и звук, пер. с англ., М. — Л., 1949; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Викторов И. А., Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике, М., 1966.
И. А. Викторов.
Упругое основание
Упру'гое основа'ние, основание сооружения , деформируемость которого учитывается при расчёте опирающейся на него конструкции. Понятием «У. о.» пользуются главным образом при решении задач по расчёту гибких фундаментов зданий и сооружений на грунтовых основаниях. В соответствующих расчётах используют различные теоретические положения, описывающие свойства грунтов , — гипотезу коэффициент жёсткости основания (коэффициент постели), теорию линейно-деформируемой среды (теорию упругости), комбинированные расчётные модели основания.
Упругое рассеяние
Упру'гое рассея'ние микрочастиц, процесс столкновения (рассеяния) частиц, при котором их внутренние состояния остаются неизменными, а меняются лишь импульсы. См. Рассеяние микрочастиц .
Упруго-пластическая волна
Упру'го-пласти'ческая волна', упругая волна , амплитуда деформации в которой столь велика, что напряжение превосходит предел упругости вещества и при её прохождении возникают пластические деформации. Скорость распространения таких волн зависит от величины деформации. В стержне, по которому прошла У.-п. в., сохраняются остаточные деформации; по их распределению можно судить о динамических механических характеристиках материала.
Упругости модули
Упру'гости мо'дули, величины, характеризующие упругие свойства материала. См. Модули упругости .
Упругости теория
Упру'гости тео'рия , раздел механики , в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. — теоретическая основа расчётов на прочность, деформируемость и устойчивость в строительном деле, авиа- и ракетостроении, машиностроении, горном деле и др. областях техники и промышленности, а также в физике, сейсмологии, биомеханике и др. науках. Объектами исследования методами У. т, являются разнообразные тела (машины, сооружения, конструкции и их элементы, горные массивы, плотины, геологические структуры, части живого организма и т.п.), находящиеся под действием сил, температурных полей, радиоактивных облучений и др. воздействий. В результате расчётов методами У, т. определяются допустимые нагрузки, при которых в рассчитываемом объекте не возникают напряжения или перемещения, опасные с точки зрения прочности или недопустимые по условиям функционирования; наиболее целесообразные конфигурации и размеры сооружений, конструкций и их деталей; перегрузки, возникающие при динамическом воздействии, например при прохождении упругих волн , амплитуды и частоты колебаний конструкций или их частей и возникающие в них динамические напряжения; усилия, при которых рассчитываемый объект теряет устойчивость. Этими расчётами определяются также материалы, наиболее подходящие для изготовления проектируемого объекта, или материалы, которыми можно заменить части организма (костные и мышечные ткани, кровеносные сосуды и т. п,). Методы У. т. эффективно используются и для решения некоторых классов задач теории пластичности (в методе последовательных приближений).
Физические законы упругости материалов, надёжно проверенные экспериментально и имеющие место для большинства материалов, по крайней мере при малых (а иногда и очень больших) деформациях, отражают взаимно однозначные зависимости между текущими (мгновенными) значениями напряжений s и деформаций e, в отличие от законов пластичности, в которых напряжения зависят от процесса изменения деформаций (при одних и тех же деформациях, достигнутых путём различных процессов, напряжения различны). При растяжении цилиндрического образца длины l, радиуса r, с площадью поперечного сечения F имеет место пропорциональность между растягивающей силой Р, продольным удлинением образца Dl и поперечным удлинением Dr , которая выражается равенствами: , , где s1 = P/F – нормальное напряжение в поперечном сечении, – относительное удлинение образца, – относительное изменение поперечного размера; Е – модуль Юнга (модуль продольной упругости), n – Пуассона коэффициент . При кручении тонкостенного трубчатого образца касательное напряжение t в поперечном сечении вычисляется по значениям площади сечения, его радиуса и приложенного крутящего момента. Деформация сдвига g, определяемая по наклону образующих, связана с t равенством t = G g, где G – модуль сдвига.
При испытаниях образцов, вырезанных из изотропного материала по разным направлениям, получаются одни и те же значения Е, G и n. В среднем изотропны многие конструкционные металлы и сплавы, резина, пластмассы, стекло, керамика, бетон. Для анизотропного материала (древесина, кристаллы, армированные бетон и пластики, слоистые горные породы и др.) упругие свойства зависят от направления. Напряжение в любой точке тела характеризуется шестью величинами – компонентами напряжений: нормальными напряжениями sхх , sуу , szz и касательными напряжениями sху , sуz , szx , Причём sху = sух и т.д. Деформация в любой точке тела также характеризуется шестью величинами – компонентами деформаций: относительными удлинениями eхх , eуу , ezz и сдвигами eху , eуz , ezx , Причём eху = eух и т.д.

