- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Трехмерный мир. Евклид. Геометрия - Josep Carrera
Шрифт:
Интервал:
Закладка:
P1/П1 = 1/3
Книга XII, предложение 18. Сферы находятся друг к другу в тройном отношении собственных диаметров.
Е1/Е1 = d13/d23
АРХИМЕД И КВАДРАТУРА ПАРАБОЛЫРассмотрим, как Архимед использовал метод исчерпывания для решения задачи о квадратуре параболы. В некотором смысле оно похоже на решение задачи о квадратуре круга, предложенное Евклидом. Его основная цель — вписать в площадь параболы треугольники и сложить их площади, уже известные нам. Архимед писал:
Квадратура параболы. Площадь сегмента параболы относится к площади вписанного в нее треугольника как один к трем.
Рассмотрим треугольник АСВ, вписанный в сегмент параболы ADCEBA, где вершина С — точка, через которую проходит касательная к параболе, параллельная хорде АВ. В этом случае Архимед утверждал, что площадь S (ADCEBA) равна 4/3 площади треугольника Т = АСВ. То есть
S(ADCEBA) = 4/3 x S(ΔABC) = 4/3 х Т,
Теперь мы должны вписать в оставшиеся сегменты параболы треугольники Т1 = ADC, Т2 = ВЕС и сегменты ADA, DCD, СЕС, ВЕВ и так до бесконечности, поскольку величины делимы до бесконечности. Все это бесконечное множество треугольников покрывает площадь, равную трети треугольника Т=АСВ. Тем не менее прибегать к бесконечному необязательно, так как мы можем воспользоваться методом исчерпывания. Можно убедиться с помощью танграма, что треугольники Т1 = ADC и Т2 = ВЕС «покрывают соответственно больше половины сегментов параболы ADCA и ВЕСВ». Очевидно, что площадь треугольника T1=ADC равна половине прямоугольника АН. При этом сегмент параболы ADCEBA меньше этого прямоугольника.
Следовательно, Т1 = ADC покрывает больше половины сегмента ADCEBA. То же самое происходит с Т1 = ADC, сегментом параболы СЕВС и прямоугольником CF. Такой метод рассуждений справедлив последовательно для каждого остающегося сегмента параболы. Важно обратить внимание на то, что хотя в данном случае мы применили его к параболе, он работает и для других кривых, включая окружности.
Однако полностью потенциал этого метода раскрыл Архимед, самый выдающийся математик античности.
Евклид дает следующее определение методу исчерпывания:
Книга X, предложение 1. Для двух заданных неравных величину если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины.
Это предложение равнозначно определению 4 книги V: если верно одно, то верно и другое, и наоборот. Архимед обратил на это внимание и решил ввести предложение в ранг постулата, который сегодня известен как принцип (или аксиома, или свойство) Архимеда.
Принцип Архимеда. Если имеются две величины одного порядка А и Bf то всегда существует натуральное число пу при котором п х А > В или п х В > А.
Доказав предложение 7 книги XII, Евклид решил задачу расчета объема пирамиды, унаследованную от египетских математиков. Вопрос о возможности ее решения с помощью метода танграма стоял на третьем месте в составленном Давидом Гильбертом в начале прошлого века списке из 23 задач, представляющих особый интерес для математики. Ответ, разумеется, был отрицательным. А предложение 2 дает ответ на один из важнейших вопросов классической геометрии, которому и посвящена следующая глава.
ГЛАВА 6
Квадратура круга
Одним из главных достижений пифагорейской школы было открытие возможности построить квадратуру любой многосторонней плоской фигуры. Но было ли это справедливо для круга и других фигур с одной или всеми изогнутыми сторонами? Этот вопрос занимал не только математиков, но и мыслителей, и со временем выражение «квадратура круга» стало синонимом неразрешимой задачи.
Метод танграма позволяет построить квадратуру любой многосторонней плоской фигуры. Вследствие любви к обобщению древнегреческие геометры задавались вопросом: можно ли свести к квадрату фигуры с округленными сторонами и, в частности, идеальную фигуру — круг? Первым к решению этой задачи приступил гениальный математик Гиппократ Хиосский. Он разработал серповидные фигуры (гиппократовы луночки): одну над окружностью, другую — над меньшей частью окружности и еще одну — над ее большей частью. Для доказательства, основанного на методе танграма, Гиппократу были необходимы два результата:
— теорема Пифагора;
— доказательство того, что соотношение площадей двух окружностей равно соотношению квадратов их диаметров.
Маловероятно, что Гиппократ располагал этими доказательствами: скорее всего, он интуитивно догадался об их существовании. Сейчас мы подробно рассмотрим решение задачи квадратуры луночки над окружностью.
Рассмотрим дугу AGB, проведенную над стороной АВ квадрата ADEBy и полуокружность АСВ. Между ними находится луночка AGBCAy выделенная на рисунке 1 серым цветом. Докажем, что ее площадь равна площади равнобедренного ΔАСВ. Луночка состоит из треугольника АСВ за вычетом сегмента S плюс два равных сегмента S1 и S2:
площадь AGBCA = площади АСВ — S + (S1 + S2).
Так Гиппократ применяет метод танграма. Все сводится, следовательно, к доказательству того, что S = S1 + S2. Из теоремы Пифагора мы знаем, что
АВ² = АС² + СВ². (*)
РИС. 1
Теперь достаточно объединить площади поверхностей S с указанными выше квадратами. Как мы уже сказали, Гиппократ предполагал, что круги относятся друг к другу как квадраты их диаметров, то есть выполняется соотношение
S/АВ2 = S1/AC² = S2/CB²
Следовательно,
S/AB² = (S1 + S2)/(АС² + СВ²)
(исходя из предложения 12 книги V). Согласно (*) получается, что S = S1 +S2. Действительно, очень изящное доказательство! Так была открыта дорога к решению задачи о квадратуре круга.
БЕСКОНЕЧНЫЙ РЯДДревнегреческие софисты Антифонт (480-411 до н. э.) и Брисон (ок. V века до н. э.) также занимались вопросом квадратуры круга и пришли к простому и бесспорному на первый взгляд выводу. Они предлагали описать круг методом приближения вписанных в него (Брисон добавлял — и описанных) многоугольников, построенных путем разделения пополам каждой стороны круга, то есть переходя от квадрата к восьмиугольнику, 16-угольнику и так далее. Таким образом можно получить последовательность плоских прямоугольных фигур, которые содержат в себе круг (см. рисунок 2). Вписывая в него и описывая вокруг него квадрат, 8-, 16-угольник и так далее, мы получаем последовательность плоских прямоугольных фигур, содержащих круг, причем все они сводимы к квадрату:
P4 < P8 < P16 < ... < Ρ2n <···< Ρ2n <···< Ρ16 < Ρ8 < Ρ4.
РИС. 2
Но есть ли гарантия, что все фигуры этого бесконечного ряда будут сводимы к квадрату? Напомним, что Аристотель запретил прибегать к понятию бесконечности — чтобы сделать невозможными подобные рассуждения. Рассмотрим следующее предложение, явно неверное:
Две стороны треугольника равны по длине третьей стороне (рисунок 3 на следующей странице).
Мы видим, что длина отрезков, составляющих ломаную линию, идущую от точки А до точки В, равна сумме длин сторон АС и СВ: АС + СВ = АС1 + С1А1 + А1С"1 + С'1В.
Если мы доведем эту последовательность до предела, ломаная линия сольется со стороной АВ, что доказывает ложность данного предложения. Гипотеза, верная до того, как ее «довели до предела», может оказаться ошибочной после этого.
РИС. 3
ПЛОЩАДЬ КРУГА В НАЧАЛАХ»Евклид открывает книгу XII двумя предложениями, которые устанавливают одну и ту же теорему для правильных многоугольников, вписанных в круг, и для круга.
Книга XII, предложение 1. Подобные многоугольники, вписанные в круги, будут относиться друг к другу как квадраты диаметров этих кругов.
Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.
Первое предложение является прямым следствием теоремы Фалеса применительно к площадям, поскольку достаточно убедиться, что каждый из центральных треугольников, на которые раскладываются правильные многоугольники, подтверждает теорему Фалеса. Второе можно было бы доказать методом бесконечного ряда, но рассуждения, в которых используется понятие бесконечности, были неприемлемы для древнегреческих ученых (хотя в этом случае это было бы правильно). Евклид мог бы довести до предела предложение 2 книги XII таким образом: если для каждого многоугольника п вида п=2k справедливо соотношение

