Превращение элементов - Борис Казаков
Шрифт:
Интервал:
Закладка:
Открытие каналовых лучей родило предположение, что в атоме есть и положительно, и отрицательно заряжённые частицы.
Но не только физические эксперименты с разрядными трубками подрывали классические представления о неделимости атомов и вносили сумятицу в умонастроение учёных. И чисто химические исследования заставили о многом задуматься. Так, шведский учёный Сванте Аррениус, опираясь на работы Я.Г.Вант-Гоффа, В.Оствальда и других исследователей в области электропроводности растворов и осмоса (явления одностороннего проникновения растворителя в раствор через полупроницаемую перегородку), а также на законы электролиза, установленные Фарадеем, выступил с теорией электрической диссоциации. Согласно этой теории молекулы вещества в растворе распадаются на заряжённые частицы — ионы. О том, как эта теория была встречена в научных кругах, лучше всего, пожалуй, говорят такие факты. Непосредственный руководитель Аррениуса профессор Клеве, узнав о новых идеях своего ученика, высказался более чем определённо: «У вас новая теория? Это весьма интересно. Прощайте — мы больше не знакомы». А когда основные положения теории Аррениуса были опубликованы, английский профессор Армстронг сравнил её с давно отжившей теорией флогистона.
Однако предположение о «разложимости» атомов вещества получало всё новые и новые подтверждения.
В 1895 г. с катодными трубками много и сосредоточенно работал директор института в Вюрцбурге Вильгельм Конрад Рентген. Он обнаружил, что от разрядной трубки исходят какие-то лучи, способные проникать через непрозрачные предметы. Шесть недель провёл он в лаборатории, лихорадочно ставя опыт за опытом. Делиться ни своими наблюдениями, ни — тем более — выводами он не спешил, что вполне соответствовало его характеру учёного-экспериментатора. Когда его спросили, что он подумал, когда обнаружил свечение (фосфоресценцию) в темноте, он ответил: «Я не думал — я экспериментировал».
Решившись, наконец, обнародовать результаты своих исследований, Рентген назвал открытые им лучи X-лучами, давая тем самым понять, что они требуют ещё изучения, чтобы полностью установить их природу.
Новые лучи немедленно нашли себе практическое применение и стали притчей во языцех.
Что только не говорили и не писали о лучах Рентгена!
Сатирические журналы помещали карикатуры и стихи, в которых утверждали, что Рентген обладает мрачным юмором, предоставляя «влюблённым возможность любоваться костями и безносым черепом объекта своей любви».
Одна из лондонских фирм использовала поднявшийся вокруг нового открытия шум и стала рекламировать бельё, которое «предохраняло от проникновения страшных лучей».
Однажды в адрес Рентгена пришло письмо, в котором автор просил прислать ему несколько X-лучей и объяснить, как ими пользоваться: он хочет найти револьверную пулю, застрявшую у него в груди несколько лет назад. На это Рентген ответил в духе самой просьбы: он сообщил, что, к сожалению, у него нет запасов X-лучей, да и пересылка их — дело хлопотное, не лучше ли поступить проще — прислать ему грудную клетку…
В американском штате Нью-Джерси в 1896 г. некий конгрессмен внёс проект закона, запрещающий применение X-лучей… в театральных биноклях, дабы сохранить чистоту нравов.
Всё это, разумеется, не более чем курьёзы, но не настолько, чтобы от них просто отмахнуться. Они говорят о многом. Пожалуй, это один из тех первых случаев, когда научное открытие сразу же приобрело характер общественной сенсации. Наука становилась общественным явлением. Время, когда она жила сама по себе, оставалась в стороне от общественных потребностей, а её достижения — в сфере её собственных интересов, всё дальше и дальше уходило в прошлое.
X-лучи отличались от катодных: их не удавалось отклонять магнитным полем, и были они глубоко проникающими, хотя также оставались невидимыми и также вызывали свечение. Именно благодаря последним двум свойствам они могли быть открыты и ранее. Ученик Герца Ленард, за два года до Рентгена экспериментировавший с разрядными трубками, попросту не заметил X-лучей, хотя и имел с ними дело. Не заметил потому, что ставил опыты с определённой научной целью — развенчать гипотезу о том, что катодные лучи состоят из частиц. Впоследствии Ленард настоятельно добивался, чтобы его признали первооткрывателем X-лучей. Известный английский физик Г.Стокс заметил по этому поводу, что «Ленард, быть может, открыл рентгеновы лучи в своём мозгу, тогда как Рентген направил их в кости других людей». Озлобленный непризнанием Ленард через много лет стал изгонять «еврейскую физику» из университетов и научно-исследовательских институтов гитлеровской Германии, за что получил награду: фашистская академия наук переименовала лучи Рентгена в «лучи Ленарда».
Итак, открытие X-лучей произвело на научный мир ошеломляющее впечатление. Научные журналы наперебой высказывались об их свойствах, происхождении и, само собой разумеется, перспективах использования.
Многим казалось, что X-лучи — частный случай, что существует огромное количество разного рода излучений. Научные лаборатории Европы и Америки охватила «лучевая лихорадка». Занимались поисками новых лучей с необычными свойствами и большие учёные, и недоучки, и дилетанты, и, конечно, прожжённые шарлатаны. Если к средним векам следует отнести расцвет алхимии, то сейчас начался, с позволения сказать, своеобразный период «алфизики», продолжавшийся не столь уж малое время.
В 1903 г. на почве повышенного интереса к разного рода лучам конфуз случился не с кем-нибудь, а с учёным, членом французской Академии наук, главой физического отделения университета в городе Нанси профессором Блондло.
Он объявил об открытии N-лучей, которые якобы спонтанно, без внешнего воздействия, исходили от некоторых металлов и по многим своим свойствам превосходили лучи Рентгена. Между прочим, произошло это после того, как была уже известна радиоактивность. Поэтому сообщение Блондло было с доверием воспринято многими видными исследователями, в том числе и сыном Анри Беккереля — первооткрывателя уранового излучения. В десятках лабораторий занялись изучением N-лучей, и вскоре выяснилось: никаких таких N-лучей нет. Блондло ошибся, и установил это американец Роберт Вуд, побывавший в лаборатории Блондло, причём очень некстати: французскому учёному собирались выдать медаль и денежную премию на ежегодном заседании академии. Медаль и деньги профессору всё-таки вручили, но не за N-лучи, а «за долголетние труды в науке». На Блондло, которому казалось, что он видел и исследовал свои лучи, вся эта история так подействовала, что привела его к сумасшествию и смерти.
Словом, интерес к разного рода излучениям нарастал. Англичанин Дж. Дж. Томсон, который, кстати, мог бы тоже быть первооткрывателем X-лучей, доказал существование частицы — носителя электричества, предсказанной ранее Гельмгольцем и окрещённой ирландским физиком Стоуни электроном. 29 апреля 1897 г. — день заседания Лондонского Королевского общества, на котором Томсон сделал сообщение о своей работе, — стали считать днём рождения электрона, первой материальной частицы меньше атома. Это значит, что атом перестал быть последним «кирпичиком» материи, который, как считалось, ни измерить, ни разделить уже нельзя. Ну а поскольку, как выяснилось, в атоме есть частицы, несущие отрицательный заряд, то должны быть к другие частицы, которые уравновешивали бы суммарный заряд электронов: ведь атом в целом нейтрален.
Как же они там, в атоме, расположены?
Первым, кто попытался ответить на вопрос, был сам Дж. Дж. Томсон. Он писал: «Я представляю атом состоящим из большого числа микротел, которые я называю корпускулами, эти корпускулы равны между собой; масса корпускулы равна массе отрицательного иона в разреженном газе, т. е. приблизительно 3·10–26 г. В обычном атоме это собрание корпускул образует электрически нейтральную систему. Поскольку отдельные корпускулы аналогичны отрицательным ионам, следовательно, когда они собираются в нейтральный атом, отрицательные заряды уравновешиваются чем-то, имеющим положительный заряд, равный сумме зарядов отрицательно заряженных корпускул».
Это была первая модель атома.
Томсон видел несовершенство своей модели и говорил, что «каждое новое открытие не является пределом, дальше которого нельзя идти, а наоборот, служит проспектом, ведущим в новые, ещё не исследованные страны…». Однако при всём несовершенстве предложенная Томсоном модель обозначила собой крупный шаг теоретической физики. Можно сказать, что она была если не самим проспектом, то, бесспорно, его началом, первой смелой попыткой описать ту «неисследованную страну», тот мир, где за сравнительно короткий срок наука нашла принципиально новый источник энергии — энергии атома и атомного ядра.