Математика для взрослых - Кьяртан Поскитт
Шрифт:
Интервал:
Закладка:
Согнем чек так, чтобы разделить перечень покупок пополам, и прибавим 1 к сумме каждой покупки, отображенной на выбранной нами стороне чека.
У нас получилось 10 покупок, так что прибавляем 10 к 58 — выйдет 68 фунтов. Это число должно приблизительно соответствовать точной сумме. Давайте-ка проверим… Ну, совсем неплохо!
Советы
Если в магазине проходит акция «два по цене одного» или есть еще какие-нибудь скидки, в чеке могут встретиться отрицательные числа. Лучше игнорировать их при первоначальном сложении и вычесть в самом конце. Кроме того, если на кассе ваши покупки раскладывают по пакетам, в некоторых магазинах в чеке пишут «сумму за пакет» – эти числа учитывать не нужно.
Как это работает
Числа в колонке пенсов могут колебаться от 0 до 99. У одних цен число пенсов невелико (например, 25), тогда как у других бывает довольно большим (например, 80). В среднем выходит около 50 пенсов на покупку, поэтому, чтобы получить приблизительную сумму пенсов, можно сосчитать количество покупок и прибавить 50 пенсов на каждую. Однако гораздо проще уменьшить число покупок вдвое (для этого мы и согнули чек пополам) и добавить на каждую покупку по 1 фунту (50 + 50 пенсов).
Еще больше советов покупателю! Раздел «Деньги и проценты» полностью посвящен процентам, экономии средств и скидкам.
ВЫЧИТАНИЕ
Несмотря на то что складывать можно по несколько чисел одновременно, никогда не пытайтесь вычитать более чем по одному числу за раз. Давайте сначала рассмотрим традиционный способ вычитания, а затем познакомимся с отличным новым способом, который сегодня преподают в школах.
Старый способ
Ключ к вычитанию — помнить о том, что число, скажем 73, это то же самое, что и 70 + 3.
Вычислить, сколько будет 73 – 2, несложно. Достаточно вычесть единицы, чтобы получить 3 – 2 = 1. Вторую часть (70) трогать при этом не надо, она войдет в ответ без изменений (удобно использовать бумагу в клеточку, чтобы видеть, где единицы, десятки и т. д.).
Все становится интереснее, если надо от 73 отнять 9. Это то же самое, что и 70 + 3 – 9, однако с 3 – 9 так просто уже не разделаться.
Нам нужно сделать вот что: представим 73 как 60 + 13. Для этого придется поменять 7 на 6 и приписать перед 3 маленькую единичку. Поэтому я и пользуюсь бумагой в клеточку — тогда видно, что число сверху это 60 + 13, а не 613.
Далее вычисляем 13 – 9 = 4, и с единицами на этом покончено. От 70 же осталось 60, так что окончательный ответ: 60 + 4 = 64.
Теперь, уяснив основной принцип, перейдем к насущным задачам. Предположим, что вы решили построить модель линкора из 6305 спичек, но на данный момент у вас всего 1847 спичек — сколько еще спичек понадобится?
Вот пример, который нужно решить, и хитрость состоит в том, что начать следует с единиц и двигаться к старшим разрядам. Сначала придется разобраться с 5 – 7. Нам понадобится еще десяток, но у числа 6305 в столбце десятков стоит нуль, так что нам будет нужна еще и тройка в столбце сотен. Тогда мы получим требуемый десяток, вычислив 30 – 1 = 29.
Вы видите, что мы заменили 30 на 29 и добавили 1 перед 5. Теперь можно подсчитать: 15 – 7 = 8.
Разделавшись с единицами, закроем их бумажкой и сосредоточимся на остальной части выражения, а именно на вычитании 629 – 184. Поскольку 9 – 4 = 5, сразу запишем 5 в результат. Получается, что со столбцом десятков мы разобрались без проблем.
Учитывая, что от 2 восемь так просто не отнять, займем 1 из 6 (в столбце тысяч останется 5) и запишем 1 перед 2. Это даст нам 12 – 8 = 4. И наконец, в столбце тысяч будет 5 – 1 = 4.
Итак, вот что у нас получилось:
Теперь мы знаем, что, для того чтобы построить линкор, нам понадобится еще 4458 спичек. (И придется где-то их раздобыть или же найти себе другое хобби.)
Новый способ
В наши дни детей учат вычитать, взяв меньшее число и увеличивая его до тех пор, пока оно не сравняется с большим числом. Джанет, продавщица в кондитерской, именно так и поступает, когда выдает сдачу. Если вы дадите ей 5 фунтов за пирог, который стоит 2,23 фунта, она должна будет дать вам 2,77 фунта сдачи (5 – 2,23). Чтобы убедиться, что это так, Джанет комментирует свои подсчеты: сперва она говорит, сколько стоит пирог, затем прибавляет номинал каждой монеты (начиная с самых мелких), отсчитывая их, пока сумма не достигнет 5 фунтов.
Этот подход можно использовать и для вычитания чисел. Давайте опять вернемся к спичкам: нам нужно подсчитать, сколько будет 6305 – 1847. Начнем понемногу прибавлять спички к 1847, по ходу дела отслеживая, что происходит.
Это и есть ответ: 6305 – 1847 = 4458. На первый взгляд тут задействовано слишком много чисел, но потренировавшись, вы освоитесь с этим методом. Изящно, не правда ли?
Отрицательные числа
Перед отрицательными числами всегда стоит знак «минус», а перед положительными «плюс» обычно не пишут, разве что в таких выражениях: 3 + 6 – 4 = 5. Здесь числа 3, 6 и 5 — положительные, а 4 — отрицательное.
Всякое число будет либо положительным (+), либо отрицательным (–).
Иногда сумма может давать отрицательный результат, особенно если речь идет о деньгах.
Величина долга всегда вычитается, то есть она отрицательна.
Вычитание большего числа из меньшего поначалу может сбивать с толку. Для простоты понимания представьте себе линейку с нулем посередине. Положительные числа возрастают в одном направлении, отрицательные — в противоположном.
Когда женщина находит 5 фунтов, она продвигается на 5 шагов в положительном направлении.
Но когда мальчик требует 7 фунтов, это отбрасывает ее назад — до нуля и дальше, на отрицательную сторону линейки. Она лишилась своих 5 фунтов и должна еще 2 фунта.
В случае больших чисел уже не столь очевидно, сколько еще вы должны. Предположим, вы играете в «Монополию» и у вас есть 623 фунта. Вы останавливаетесь на Пикадилли, там четыре дома, и с вас причитается арендная плата 1025 фунтов. Вы отдаете все свои деньги, но понятно, что этого не хватает для полной уплаты аренды. Сколько еще осталось заплатить? Надо вычислить 623 фунта – 1025 фунтов.
Для простоты разобьем вычитание на два шага.
Если отрицательное число больше положительного, ответ будет отрицательным. Поэтому в конце вычислений убедитесь, что перед результатом стоит знак «минус».
Находим разность между двумя числами. Для этого вычитаем меньшее число из большего: 1025 – 623 = 402.
Не забудьте поставить знак «минус»! Ответ равен – 402 фунта, именно столько вы должны. Так что либо раскошеливайтесь, либо просто возьмите всю эту «Монополию», швырните ее в стену и любуйтесь, как разлетаются по комнате бумажки и пластиковые фишки. Вас за это, конечно, не похвалят, но зато вы получите определенное удовольствие.
УМНОЖЕНИЕ
Трижды семь — двадцать один, четырежды семь — двадцать восемь… Чего уж скрывать, зазубривание таблицы умножения — на редкость утомительное занятие, однако эта таблица имеет слишком большую практическую ценность, чтобы просто забыть о ней как о страшном сне. Работать с ней будет гораздо легче, если вы освоите несколько трюков, быстрых приемчиков и прочих секретов взаимосвязи чисел в таблице.
Тайны таблицы умножения
В этой таблице показаны все результаты умножения от 1 × 1 до 10 × 10. Всего здесь 100 результатов. Первым делом давайте избавимся от некоторых из них.
При умножении на 10 в конец числа просто добавляется ноль. Это слишком легко и при переходе к умножению больших чисел нам не понадобится. Так что исключим из таблицы 10-ю строку и 10-й столбец.
Если поменять множители местами, ответ останется тем же. Например, и 3 × 7 и 7 × 3 равно 21. Поэтому уберем из таблицы все повторяющиеся результаты.
Итак, мы избавились от более чем половины ячеек. Посмотрим, что осталось.
Числа в серых ячейках называются квадратами целых чисел, или просто квадратами. Это результаты умножения каждого числа на само себя. Например, вдоль каждой стороны шахматной доски 8 клеток, поэтому полное количество клеток на доске будет равняться восьми в квадрате. Записывают это так: 82, что соответствует 8 × 8 = 64.
Если вы ненавидите зубрить таблицу умножения, можете заполнить ее ячейки еще одним способом. Сначала можно просто складывать нечетные числа 1, 3, 5, 7 и т. д. Начинаем с 1 + 3 = 4. Затем прибавляем 5, получаем 9, затем 7, получаем 16… Так вы вычислите квадраты всех чисел.