- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
В поисках бессмертия - Виктор Борисович Вургафтик
Шрифт:
Интервал:
Закладка:
Благодаря Я.С.Друскину все внимание В.Б.Вургафтика сконцентрировалось на Христе . В своих работах по логике и теории познания он развивал основные положения Я.С.Друскина и пользовался его односторонне – синтетическим тождеством. После смерти Я.С.Друскина В.Б. в основном занимался вопросами экклезиологии.
Образование: окончил КПИ и Борисоглебский педагогический институт, учился на 3-х годичных курсах английского языка.
Общественная деятельность: много преподавал, обладая исключительной способностью очень сложные вещи объяснять просто. Пользовался любовью своих учеников.
Мои представления
Киев, ноябрь 1969 г.
Мои представления постепенно изменяются, всё более приближаясь, как я полагаю, к истине. Это, быть может, та самая абсолютная истина, к которой, согласно официальной точке зрения, приближается научное познание; но я знаю, что человек может её достичь и без оного. Однако она и подходы к ней значительно глубже мышления и потому не могут быть добыты рассуждениями и дискуссией. Рамакришна, который видел её так ясно, как немногие из живущих, не был силён в аргументации, логике.
Последнее время я говорю о мире на языке планиметрии. При этом лучше пользоваться квантовой планиметрией; под нею я понимаю плоскую геометрию, в которой длина может быть не любой, а лишь кратной некоторой неделимой длине – её называют элементарной; я буду называть её единицей. Таким образом, длина участка какой-либо линии /прямой или кривой/ между двумя её точками может быть равна нулю /тогда эти точки совпадают/, одной единице, двум, трём и т.д., n единицам /n – целое неотрицательное число/, но не может равняться 2/3 или 12,4 единицам. Существует мнение, что геометрия реального мира именно такова, но из-за того, что единица ничтожна мала /~10-13 см/, мы этого обычно не замечаем, и нам кажется, что длина изменяется не скачками, а непрерывно. Если это так, длину можно сравнить с энергией атома, которая, как известно из квантовой механики, может принимать лишь некоторые ступенчатые значения и потому изменяется только скачками, не выливается из атома, а высыпается. Меня не интересует, так ли обстоит дело с длиной, но язык такой геометрии кажется мне очень подходящим для описания мира.
Она существенно отличается от обычной. Так, в ней не через любые две точки можно провести прямую: в противном случае могло бы оказаться, что длина её отрезка между этими точками не кратна единице. Не всегда две непараллельные прямые пересекаются – ведь на какой-нибудь из них может быть точка, которая вместе с точкой пересечения выделила бы отрезок дробной длины. Вообще следует отметить, что не в любом месте данной линии можно взять точку; необходимо, чтобы её участки между взятой точкой и другими принадлежащими ей точками имели целочисленные длины. Кажется парадоксальным, что несовместимы окружность и её радиус – отрезок, соединяющий её центр с какой-нибудь её точкой; однако длина окружности /от этой точки до неё же/ l = 2πr, где r – длина радиуса, так что обе эти длины никак не могут быть целочисленными. Если проведена окружность, мы не можем провести её радиус, а если дан радиус, нельзя построить окружность. Но такова уж квантовая планиметрия! Ведь не удивляются же физики тому, что у электрона не может быть одновременно местонахождения и скорости и чем в большей степени он обладает одним, тем в меньшей степени ему присуще другое /когда я говорю, что электрон не обладает скоростью, я имею в виду не то, что скорость равна нулю, а то, что это понятие не имеет для него смысла, как например, понятие цвета/.
Итак, представь себе множество всех лучей, исходящих из единого центра, и описанную из него дугу единичной длины. Допустим, она может двигаться, всегда оставаясь, однако, дугой с тем же центром и той же длины; понятно, что по мере приближения к центру она всё сильнее искривляется. Всякое ли движение для неё возможно? Если бы оно было плавным, каждый из её концов мог бы описать линию, не кратную единице, а такая линия в нашей геометрии невозможна. Значит, движение может быть только скачкообразным: наша дуга исчезает в одном месте и в тот же момент появляется в другом.
Пусть возможны лишь круговые и радиальные скачки. Чтобы представить себе круговой скачок, опиши из нашего центра дугу длиной в две единицы и совмести неподвижную дугу сперва с одной её половиной /положение до скачка/, а затем – с другой /положение после него/. А что такое радиальный скачок дуги?
Прежде всего рассмотрим такое её положение, в котором концы её принадлежат двум лучам, т.е. на луче от центра до дуги укладывается целое число единиц. Разумеется, никакие лучи, расположенные между этими, её не пересекают. Дугу в таком положении будем называть полной, а во всяком другом – пустой /причина употребления этих слов станет ясной позже/.
Так вот, если радиальный скачок совершается внутрь, дуга после него должна быть полной, причём часть плоскости, содержащая её и ограниченная двумя лучами, проходящими через её концы, должна содержать также прежнее её положение. Радиальный скачок наружу можно описать точно так же, только прежнее положение дуги становится новым и наоборот; таким образом, вначале она обязательно должна быть полной.
Скачки того и другого рода могут чередоваться по одному или сериями. Конечно, дуга всё время может совершать круговое движение. При этом она либо всегда полна, т.е. между скачками опирается на два луча, либо всегда пуста. Совершая же постоянное радиальное движение одного направления – внутрь или наружу – дуга должна быть всегда полной /за исключением, быть может, исходного положения при движении внутрь/. Она может достичь центра, свернувшись при этом в точку /как бы намотавшись на диск нулевого радиуса/, – ведь в этом положении она полна. Наконец, она может возникнуть из центра.
Как видишь, мой язык не исчерпывается геометрией – это язык кинематики. Теперь настало время объяснить, зачем мне понадобился весь этот аппарат, дать толкование притче.
Плоскость – это мир. Пусть в некоторый момент дуга полна. Рассмотрим её и часть плоскости, содержащую её и ограниченную двумя лучами, на которые она опирается. Дуга есть человеческое сознание, душа, в которой в данный момент находится эта часть мира. Или иначе: дуга – это субъект, а рассматриваемая часть плоскости – созерцаемый им объект. Тем самым два луча, которые её ограничивают, представляют собою границу, отделяющую его от всего остального. То обстоятельство, что дуге принадлежит точка одного из этих лучей и точка другого /конечные точки дуги/, мы выразим теперь так: субъект созерцает границу объекта /а, значит, его самого/. Заметим,

