- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Совершенная строгость. Григорий Перельман: гений и задача тысячелетия - Маша Гессен
Шрифт:
Интервал:
Закладка:
Цифры способны заворожить кого угодно. Те, кто занимается математикой, склонны охотнее других людей наделять цифры смыслом.
В 2000 году ведущие математики мира собрались в Париже, чтобы оценить состояние своей отрасли знаний. Это было событие исключительной важности. Ученые говорили о красоте математики, о заслугах друг друга и — самое важное — вместе мечтали о будущем. "Встречу тысячелетия" организовал Институт Клэя — некоммерческая организация, основанная бостонским бизнесменом Лэндоном Клэем и его супругой Лавинией для популяризации математики и поощрения занятий ею. За два года своего существования институт обзавелся впечатляющим офисом неподалеку от Гарвардсквер в Кембридже (штат Массачусетс, США) и вручил несколько наград за выдающиеся исследования.
Теперь Институт Клэя намеревался предложить амбициозный план развития математики. По словам Эндрю Уайлза — британского ученого, доказавшего в 1995 году Великую теорему Ферма, собравшиеся в Париже ученые должны были составить перечень наиболее сложных математических проблем XX века, решение которых мы более всего хотели бы увидеть: "Мы не знаем, как и когда будут решены эти задачи. На это может уйти пять лет, а может и сто. Но их решение откроет совершенно новые возможности для математических находок, новые горизонты".
Для того чтобы математическая сказка стала былью, Институт Клэя определил семь "задач тысячелетия" (семь — магическое число во многих культурах мира) и назначил фантастическую награду — миллион долларов — за решение каждой из них. "Короли математики" провели серию лекций, в которых напомнили о сути этих задач.
Майкл Фрэнсис Атья, один из крупнейших математиков ХХ века, начал с гипотезы, сформулированной Анри Пуанкаре еще в 1904 году и ставшей классикой топологии: "Над этой задачей бились многие знаменитые математики, но не решили ее. Иногда они сами находили у себя ошибки. Иногда это делали другие". Слушатели — среди них было по крайней мере несколько человек, потерпевших неудачу с гипотезой Пуанкаре, — смеялись. Атья предположил, что в решении этой "задачи тысячелетия" может помочь физика ("подсказка, которую студенту, корпящему над задачей, дает преподаватель, который сам не может ее решить"). В аудитории и в самом деле были люди, которые работали над проблемами физики, надеясь, что они помогут приблизиться к доказательству гипотезы Пуанкаре.
Никто из собравшихся в Париже математиков не предполагал, что решение будет найдено так быстро. Многие математики, работающие над знаменитыми задачами, предпочитают держать это в секрете (как, кстати, и Уайлз, когда он занимался теоремой Ферма), но обычно следят за тем, что делают другие. И хотя новые варианты доказательства гипотезы Пуанкаре публиковались почти каждый год, последний значительный успех был достигнут еще в 1982 году. Тогда американец Ричард Гамильтон предложил план решения (математики называют подобные планы программами). Он нашел, однако, что следовать этому плану слишком сложно, а приемлемую альтернативу никто предложить не смог. Гипотеза Пуанкаре могла навсегда остаться недоказанной.
Решение любой из "задач тысячелетия" — настоящий подвиг: несколько поколений математиков сошло в могилу, не достигнув успеха. "Математический институт Клэя намерен ясно дать понять, что ценность математики заключается в решении именно этих проблем. Их можно назвать математическим Эверестом. За покорение этого пика — невероятно трудная задача! — нам придется заплатить высокую цену, может, даже отдать жизнь. Но вид с этой вершины откроется фантастический", — заявил французский математик Ален Конн — другой гигант ХХ века.
Поскольку считалось, что ни одну из "задач тысячелетия" в обозримом будущем никто не решит, Институт Клэя определил четкий порядок вручения премии. Решение "задачи тысячелетия" должно быть оформлено в виде публикации в рецензируемом научном издании (так обычно математики и поступают). В течение следующих двух лет международное математическое сообщество должно проверить предложенное решение и прийти к согласию в вопросе о его правильности и авторском приоритете. Наконец, следуя рекомендации наградного комитета, Институт Клэя вручит победителю миллион. Уайлз предполагал, что решение первой "задачи тысячелетия" может появиться — если оно вообще когда-нибудь появится — не ранее чем через пять лет. В общем, процедура не выглядела уж очень сложной.
Однако всего два года спустя, в ноябре 2002-г0, мало кому известный российский математик опубликовал в интернете доказательство гипотезы Пуанкаре. Он не был первым, кто претендовал на разрешение этой проблемы. Он не был даже первым россиянином, опубликовавшим в том году доказательство этой гипотезы в Сети. Но только его вариант решения оказался верным. После этого события стали развиваться совсем не так, как предполагал план Института Клэя и вообще любой план, который обычный математик мог бы счесть приемлемым. Григорий Яковлевич Перельман — россиянин, которого я упомянула выше, — не стал публиковать свои результаты в солидном научном журнале. Он отказался проверять и даже читать объяснения своего решения, опубликованные другими математиками. Он отверг предложения лучших университетов мира о сотрудничестве. Он не принял медаль Филдса — высшую математическую награду, которую ему присудили в 2006 году. Наконец, он устранился от общения не только с коллегами- математиками, но и почти со всеми остальными людьми.
Загадочное поведение Григория Перельмана привлекло к решенной им задаче такое внимание, которого история математики до сих пор не знала. Интерес подогревала и беспрецедентная величина награды, ожидавшей Перельмана, и история с плагиатом, когда двое китайских математиков попытались оспорить вклад Перельмана в доказательство гипотезы Пуанкаре.
Чем больше говорили о Григории Перельмане, тем вернее он отдалялся от людей, пока наконец даже те, кто близко с ним знаком, не заявили, что математик просто исчез, хотя он и продолжает жить в той же петербургской квартире, в которой провел много лет. Одно время он подходил к телефону, но только чтобы сообщить миру, что не собирается с ним контактировать.
Когда я решила написать книгу о Григории Перельмане, я намеревалась ответить на три вопроса. Во-первых, почему именно Перельман оказался человеком, сумевшим доказать гипотезу Пуанкаре; чем он отличается от других математиков, бравшихся за эту задачу? Во-вторых, почему он после своей победы оставил занятия математикой, более того, порвал связи с внешним миром? В-третьих, откажется ли Григорий Перельман от "Премии тысячелетия", которую полностью заслужил и которой определенно нашел бы применение, — и если да, то почему?
(adsbygoogle = window.adsbygoogle || []).push({});
