- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
7. Физика сплошных сред - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Наша программа привела нас к шести соотношениям между полями в областях 1 и 2. Все они выписаны в табл. 33.1. Их можно использовать для согласования волн в двух областях.
Таблица 33.1 · граничные условия на поверхности ДИЭЛЕКТРИКА
(Поверхность расположена в плоскости yz.)
Однако я хочу отметить, что идея, которую мы только что использовали, будет работать в любой физической ситуации, где у вас есть дифференциальные уравнения и требуется найти решение в области, пересекаемой резкой границей, по обе стороны которой некоторые из физических свойств различны. Для наших теперешних целей было бы легче получить те же самые уравнения с помощью рассуждений о потоках и циркуляциях на границе. (Проверьте, можно ли подобным путем получить те же самые результаты.) Однако теперь вы знаете метод, который будет хорош, даже когда вы попали в затруднительное положение и не видите простых физических соображений относительно того, что происходит на границе. Вы можете просто воспользоваться дифференциальными уравнениями.
§ 4. Отраженная и преломленная волны
Теперь мы готовы применить наши граничные условия к волнам, перечисленным в § 2, где мы получили:
Нами получены еще кое-какие сведения: вектор Е перпендикулярен для каждой волны вектору распространения k.
Полученный результат будет зависеть от направления вектора Е («поляризации») в падающей волне. Анализ сильно упростится, если мы рассмотрим отдельно случай, когда вектор Е параллелен «плоскости падения» (т. е. плоскости ху), и случай, когда он перпендикулярен к ней. Волна с любой другой поляризацией будет просто линейной комбинацией этих волн. Другими словами, отраженные и преломленные интенсивности для различных поляризаций будут разными и легче всего отобрать два простейших случая и отдельно рассмотреть их.
Я подробно проанализирую случай падающей волны, перпендикулярной к плоскости падения, а потом просто опишу вам, что получается в других случаях. Я немного жульничаю, рассматривая простейший пример, однако в обоих случаях принцип один и тот же. Итак, мы считаем, что вектор Еi имеет только z-компоненту, а поскольку все векторы Е смотрят в одном и том же направлении, векторный значок можно опустить.
Оба материала изотропны, поэтому вынужденные колебания зарядов в материале будут происходить в направлении оси z и у полей Е в преломленной и отраженной волнах тоже будет только одна z-компонента. Таким образом, для всех волн Ех и Еy , Рхи Рyравны нулю. Направления векторов Е и В в этих волнах показаны на фиг. 33.6.
Фиг. 33.6. Поляризации отраженной и преломленной волн, когда поле Е в падающей волне перпендикулярно к плоскости падения.
(Здесь мы изменили нашему первоначальному намерению все получить из уравнений. Этот результат также можно было бы получить из граничных условий, однако, используя физические аргументы, мы избежали больших алгебраических выкладок. Когда у вас будет свободное время, посмотрите, можно ли его действительно вывести из уравнений. Он, разумеется, согласуется с уравнениями; просто мы не доказали, что отсутствуют другие возможности.)
Теперь наши граничные условия [уравнения (33.26) — (33.31)] должны дать соотношения между компонентами Е и В в областях 1 и 2. В области 2 у нас есть только одна преломленная волна, а вот в области 1 — их две. Какую же из них нам взять? Поля в области 1 будут, разумеется, суперпозицией полей падающей и отраженной волн. (Поскольку каждое удовлетворяет уравнениям Максвелла, то им удовлетворяет и сумма.) Поэтому, когда мы используем граничные условия, нужно помнить, что
E1=Ei+Er, E2=Et
я аналогично для В.
Для поляризаций, которыми мы сейчас занимаемся, уравнения (33.26) и (33.28) не дают никакой новой информации, и только уравнение (33.27) поможет нам. Оно говорит, что на границе, т. е. при х=0:
Ei+Er=Et.
Таким образом, мы получаем уравнение
которое должно выполняться для любого t и любого у. Возьмем сначала y=0. Для этого значения уравнение (33.38) превращается в
согласно которому два осциллирующих члена равны третьему. Это может произойти, только когда частоты всех осцилляции одинаковы. (Невозможно, сложив три или какое-то другое число подобных членов с различными частотами, получить для любого момента времени в результате нуль.) Итак,
w"=w'=w, (33.39)
как это и было нам всегда известно, т. е. частоты преломленной и отраженной волн те же самые, что и падающей.
Если бы мы предположили это с самого начала, то несомненно избежали бы многих трудностей, но мне хотелось показать вам, что тот же самый результат можно получить и из уравнений. А вот когда перед вами будет стоять реальная задача, лучше всего пускать в оборот сразу все, что вы знаете. Это избавит вас от лишних хлопот.
По определению абсолютная величина k задается равенством k2=n2w2/с2, поэтому
А теперь обратимся к уравнению (33.38) для t=0. Используя снова те же рассуждения, что и прежде, но на сей раз основываясь на том, что уравнения должны быть справедливы при всех значениях у, мы получаем
k"y=k'y=ky. (33.41)
Из формулы (33.40) k'2=k2, так что
k'2x+k'2y =k2x+k2y. Комбинируя это с (33.41), находим
k'2x=k2x , или k'x=+kx. Знак плюс не имеет никакого смысла; он не дает нам никакой отраженной волны, а лишь другую падающую волну, и с самого начала мы говорили, что будем решать задачу с единственной падающей волной, так что
k'x=-kx. (33.42)
Два соотношения (33.41) и (33.42) говорят нам, что угол отражения равен углу падения, как это и ожидалось (см. фиг. 33.3). Итак, в отраженной волне
Для преломленной волны мы уже получали
Их можно решить и в результате получить
Предположим на мгновение, что n1и n2 — вещественные числа (т. е. что мнимая часть показателей очень мала). Тогда все k тоже будут вещественными и из фиг. 33.3 мы видим, что
ky/k =sinqi, ky/k"=sinqt. (33.46)
Но ввиду уравнения (33.44) мы получаем
n2sinqt=nisinqi;, (33.47)
т. е. уже известный нам закон Снелла для преломления. Если же показатель преломления не вещественный, то волновые числа оказываются комплексными и нам следует воспользоваться
(33.45). [Конечно, мы могли бы определить углы qi. и qt из
(33.46), и тогда закон Снелла (33.47) был бы верен и в общем случае. Однако при этом углы тоже стали бы комплексными числами и, следовательно, потеряли бы свою геометрическую интерпретацию как углы. Уж лучше описывать поведение волн соответствующими комплексными величинами kx или k"x..]
До сих пор мы не обнаружили ничего нового. Мы доставили себе только простенькое развлечение, выводя очевидные вещи из сложного математического механизма. А сейчас мы готовы найти амплитуды волн, которые нам еще не известны. Используя результаты для всех w и k, мы можем сократить экспоненциальный множитель в (33.38) и получить
е0+е'0=е"0. (33.48)
Но поскольку мы не знаем ни Е'0, ни Е"9, то необходимо еще одно соотношение. Нужно использовать еще одно граничное условие. Уравнения для Ехи Еyне помогут, ибо все Е имеют только одну z-компоненту. Так что мы должны воспользоваться условием на В. Попробуем взять (33.29):
Bx2 =Bx1. Согласно условиям (33.35)—(33.37),
Вспоминая, что w" =w'= w и k"y=k'y=ky, получаем
е0+е'0 =е"0.
Но это снова уравнение (33.48)! Мы напрасно потратили время и получили то, что уже давно нам известно.

