- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Григорий Перельман и гипотеза Пуанкаре - Олег Арсенов
Шрифт:
Интервал:
Закладка:
Итак, вернемся в 1992 год, когда молодой, но уже довольно многообещающий сотрудник Математического института им. В. А. Стеклова Григорий Перельман попал на лекцию светила топологии Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи — новом инструменте для изучения гипотезы геометризации Терстона — факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности со временем деформироваться примерно так же, как мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.
-78-
Рис. 30. Односвязное двумерное многообразие Пуанкаре
«С точки зрения тополога не существует разницы между бубликом и кофейной кружкой с ручкой. Оба эти объекта имеют дырку и могут быть трансформированы друг в друга без нарушения целостности. Для описания этого абстрактного топологического пространства Пуанкаре использовал слово "многообразие" (manifold). Простейшее двумерное многообразие — поверхность футбольного мяча, которая для тополога является сферой, даже если ее растянуть или скомкать. Доказательством того, что объект представляет собой двумерное многообразие (так называемую two-sphere), является то, что объект — односвязный (simply connected), то есть в нем нет дыр. В отличие от футбольного мяча бублик не является сферой. Если вы накинете лассо на футбольный мяч и начнете его затягивать, в результате вам удастся стянуть узел лассо в точку, при этом лассо будет все время находиться на поверхности мяча. Если вы завяжете лассо вокруг дужки бублика, стянуть его в точку, не разрушая целостности бублика, вам не удастся».
Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения-79-
Рис. 31. Преобразования двумерных многообразий (современное компьютерное моделирование)
Свойства двумерных многообразий были хорошо известны уже в середине XIX века, однако оставалось неясным, справедливо ли для трех измерений то, что истинно в случае двух. Пуанкаре предположил, что все замкнутые односвязные трехмерные многообразия (финитные многообразия без дырок) являются сферами. Эта гипотеза имела особенное значение для ученых, исследующих самое большое трехмерное многообразие — нашу Вселенную. Математическое доказательство этой гипотезы было, тем не менее, совсем не легким. Большинство попыток привело исследователей в тупик, но некоторые послужили источником важных математических открытий, таких как лемма Дена, теорема сферы и теорема о петле, ставших базовыми теоремами современной топологии.
Рис. 32. Замкнутое односвязное трехмерное пространство своеобразно иллюстрирует сфера Эшера
Гипотезу Пуанкаре можно было бы сформулировать еще так: любое замкнутое односвязное трехмерное пространство гомео-
-80-
морфно трехмерной сфере или, иначе говоря, все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Для пояснения этой задачи часто используют наглядный пример: если обмотать яблоко резиновой лентой, то, в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют односвязной фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязная, и предположил, что трехмерная сфера тоже односвязна. Говоря простыми словами, если трехмерная поверхность в чем-то похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. Доказать эту гипотезу не могли лучшие математики мира.
Надо вспомнить, что в феноменальном интеллектуальном забеге на «математический приз тысячелетия» участвовали и другие выдающиеся личности. Так, одним из них был видный математик и физик-теоретик китайского происхождения Шин-Тун Яу, которого тоже очень интересовали исследования Гамильтона потоков Риччи. Яу и Гамильтон познакомились в 1970-х годах и вскоре стали близкими друзьями, несмотря на разницу в темпераменте и воспитании.
Рис. 33. Ричард Гамильтон, профессор математики Колумбийского университета (США)
«Гамильтон, сын врача из Цинциннати, опровергал сложившийся стереотип математика как засушенного "ботаника". Дерзкий и непочтительный человек, он ездил верхом, занимался виндсерфингом и менял подружек как перчатки. В его
-81-
жизни математика занимала место еще одного хобби. К сорока девяти годам у него сложилась репутация превосходного лектора, но количество его опубликованных работ было относительно невелико, если не считать базовых статей о потоках Риччи; кроме того, у него практически не было учеников. Перельман прочел статьи Гамильтона, после чего отправился послушать его лекцию в ИПИ. После лекции Перельман поборол свою застенчивость и поговорил с Гамильтоном.
"Мне было очень важно расспросить его кое о чем, — вспоминал Перельман. — Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков".
"Я работал над разными темами, хотя время от времени я мысленно возвращался к потокам Риччи, — добавил Перельман. — Не нужно быть великим математиком, чтобы увидеть, что потоки Риччи могут оказаться полезными в решении проблемы геометризации. Я чувствовал, что мне не хватает знаний. Я продолжал задавать вопросы…"
В 1996 году он написал Гамильтону длинное письмо, обозначив в нем свою идею — с надеждой на сотрудничество. "Он не ответил, — сказал Григорий. — И я решил работать один"».
Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решенияМежду тем после лекционного турне по американским университетам Перельман вернулся в Россию, где начал трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Решая уравнение потока Риччи (математически это дифференциальное уравнение в частных производных), Григорий Яковлевич получил очень интересные результаты, позволяющие деформировать риманову метрику на многообразии. Однако немного позже он получил довольно неприятный результат, заключающийся в том, что в процессе деформации возможно образование сингулярностей — точек, в которых кривизна стремится к бесконечности. «Сингулярные решения» очень не любят физи-
(adsbygoogle = window.adsbygoogle || []).push({});
