- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ПР) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Некоторые положения и факты П. г. применяются в номографии, в теории статистических решений, в квантовой теории поля и в конструировании печатных схем (через теорию графов).
Лит.: Вольберг О. А., Основные идеи проективной геометрии, 3 изд., М. — Л., 1949; Глаголев Н. А., Проективная геометрия, 2 изд., М.,1963; Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Хартсхорн Р., Основы проективной геометрии, пер. с англ., М., 1970; Veblen О., Young J. W., Projective geometry, v. 1—2, Boston — N. Y., 1910—18.
По материалам одноимённой статьи из 2-го издания БСЭ.
Рис. 1.
Рис. 2.
Рис. 3.
Рис. 5.
Рис. 7.
Рис. 6.
Рис. 4.
Проективная метрика
Проекти'вная ме'трика , способ измерения длин и углов средствами проективной геометрии . Он состоит в закреплении некоторой фигуры в качестве абсолюта, определяющего данную метрическую геометрию, и выделении из группы всех проективных преобразований таких, которые отображают абсолют в себя и порождают т. о. соответствующую группу движений. Например, метрика плоскости Лобачевского получается, если за абсолют принять нераспадающуюся действительную линию второго порядка,— тогда длина отрезка AB равна l ln (ABPQ ), где Р и Q — точки пересечения прямой AB с абсолютом, (ABPQ ) — двойное отношение, l — константа, одинаковая для всех отрезков. Если для измерения длин и углов используется линия второго порядка без действительных точек. то получается (эллиптическая) геометрия Римана. Для построения евклидовой и псевдоевклидовой геометрий выбирают вырожденные линии второго порядка.
Лит.: Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Клейн Ф., Неевклидова геометрия, пер. с нем., М. — Л.,1936.
Проективная плоскость
Проекти'вная пло'скость , в первоначальном смысле — евклидова плоскость, дополненная бесконечно удаленными точкамии бесконечно удаленной прямой (см. Проективная геометрия ). С топологической точки зрения П. п. является замкнутой неориентируемой поверхностью, эйлерова характеристика которой равна 1.
Проективное преобразование
Проекти'вное преобразова'ние , взаимно однозначное отображение проективной плоскости или проективного пространства в себя, при котором точки, лежащие на прямой, переходят в точки, также лежащие на прямой (поэтому П. п. иногда называется коллинеацией). П. п. проективной прямой называется взаимно однозначное отображение её в себя, при котором сохраняется гармоническое расположение точек этой прямой. Простейшим и вместе с тем наиболее важным для приложений примером П. п. является гомология — П. п., оставляющее на месте прямую и точку вне её. Примером П. п. пространства является перспектива, т. е. проектирование фигуры F , лежащей в плоскости П, из точки S в фигуру F' , расположенную в плоскости П' , любое П. п. получается конечной последовательностью перспектив. П. п. образуют группу , основным инвариантом которой является двойное отношение четырёх точек прямой. Теории инвариантов групп П. п., оставляющих на месте некоторую фигуру, представляют собой метрические геометрии (см. Проективная метрика ).
Основная теорема о П. п. проективной плоскости состоит в том, что каковы бы ни были четыре точки А , В , С, D плоскости П , из которых никакие три не лежат на одной прямой, и четыре точки A' , B' , C' , D' той же плоскости, из которых никакие три также не лежат на одной прямой, существует и притом только одно П. п., которое точки А , В , С , D переводит соответственно в точки A' , B' , C' , D'. Эта теорема применяется в номографии и аэрофотосъёмке. Аналогичная теорема имеет место и в проективном пространстве: там П. п. определяется пятью точками, из которых никакие четыре не лежат в одной плоскости. Эта теорема эквивалентна аксиоме Паппа.
В однородных координатах П. п. выражается однородным линейным преобразованием , определитель матрицы которого не равен нулю. Рассматриваются также П. п. евклидовой плоскости или пространства; в декартовых координатах они выражаются дробно-линейными функциями , причём свойство взаимной однозначности утрачивается.
Лит. см. при ст. Проективная геометрия .
Проективное пространство
Проекти'вное простра'нство , в первоначальном смысле — евклидово пространство, дополненное бесконечно удалёнными точками, прямыми и плоскостью, называемыми также несобственными элементами (см. Бесконечно удалённые элементы ). При этом каждая прямая дополняется одной несобственной точкой, каждая плоскость — одной несобственной прямой, всё пространство — одной несобственной плоскостью; параллельные прямые дополняются общей несобственной точкой, непараллельные — разными; параллельные плоскости дополняются общей несобственной прямой, непараллельные — разными; несобственные точки, дополняющие всевозможные прямые данной плоскости, принадлежат несобственной прямой, дополняющей ту же плоскость; все несобственные точки и прямые принадлежат несобственной плоскости.
П. п. можно определить аналитически как совокупность классов пропорциональных четверок действительных чисел, не равных одновременно нулю. При этом классы интерпретируются либо как плоскости П. п., а числа называются однородными координатами плоскостей. Отношение инцидентности точки (x 1 : x 2 : x 3 : x 4 ) и плоскости (u1 : u 2 : u 3 : u4 ) выражается равенством:. Аналогичнымобразом вводится понятие n -мерного П. п., играющего важную роль в алгебраической геометрии, причём координатами его могут быть элементы некоторого тела k. В более общем смысле П. п. — совокупность трёх множеств элементов, называется соответственно точками, прямыми и плоскостями, для которых определены отношения принадлежности и порядка так, что соблюдаются требования аксиом проективной геометрии . А. Н. Колмогоров и Л. С. Понтрягин показали, что если П. п. над телом k есть связное компактное топологическое пространство, в котором прямая непрерывно зависит от двух принадлежащих ей точек, и выполняются аксиомы инцидентности, то k есть либо поле действительных чисел, либо поле комплексных чисел, либо тело кватернионов.
Лит. см. при ст. Проективная геометрия .
Проектир направления
Проекти'р направле'ния (от лат. projectus — брошенный или вытянутый вперёд), оптический прибор в виде вертикальной зрительной трубы, применяемый в маркшейдерском деле для передачи дирекционного угла (направления) с земной поверхности на ориентируемый горизонт в подземной горной выработке. В основу конструкции П. н. положен принцип двойного изображения, используемый в оптических дальномерах ; двойное изображение достигается при помощи оптического клина или бипризмы, закрепляемых в насадке, надеваемой на зрительную трубу. Оптическое ориентирование, выполняемое при помощи П. н., сопровождается ошибками от рефракции воздуха в стволе шахты, поэтому существующие приборы обеспечивают необходимую точность ориентирования на глубину до 300 м. Оптическое ориентирование с помощью П. н. вытесняется гироскопическое ориентированием.
Проектирование
Проекти'рование (от лат. projectus, буквально — брошенный вперёд), процесс создания проекта — прототипа, прообраза предполагаемого или возможного объекта, состояния.
Различают этапы и стадии П., характеризующиеся определённой спецификой. Предметная область П. постоянно расширяется. Наряду с традиционными видами П. (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления П. человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т.п.) (см. Система «человек и машина» ), трудовых процессов, организаций, экологическое, социальное, инженерно-психологическое, генетическое П. и др. Наряду с дифференциацией П. идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.

