- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт - Алекс Дж. Гатман
Шрифт:
Интервал:
Закладка:
– Если мы дадим пациенту новое лекарство, поможет ли это вылечить его?
– Если мы дадим 15 %-ную скидку на наш продукт, приведет ли это к росту продаж в следующем квартале?
Однако большая часть бизнес-данных относится к данным наблюдений. Для установления причинно-следственных связей не стоит использовать исключительно данные наблюдений[30]. Поскольку такие данные не были собраны в ходе тщательно продуманного эксперимента, их полезность и основанные на них результаты должны оцениваться в соответствующем контексте. Любые утверждения о причинно-следственной связи, основанные на данных наблюдений, следует воспринимать скептически.
Задав вопрос о способе сбора данных, вы сможете понять, насколько обоснован вывод о наличии причинно-следственной связи. На самом деле некорректное установление причинности – весьма существенная проблема, к которой нам еще не раз предстоит вернуться в следующих главах книги.
Казалось бы, для решения этой проблемы достаточно как можно чаще использовать экспериментальные данные. Однако их сбор не всегда возможен, финансово оправдан и даже этичен. Например, если бы вам поручили изучить влияние «вейпинга» (курения электронных сигарет) на подростков, вы не смогли бы случайным образом разделить испытуемых на экспериментальную и контрольную группы и заставить участников первой группы курить электронные сигареты во имя науки. Это было бы неэтично.
Как главный по данным, вы должны работать с имеющимися у вас данными, одновременно опосредуя их способность влиять на принимаемые бизнес-решения. У некоторых компаний и отделов есть ресурсы, позволяющие проверить многообещающие данные наблюдений с помощью серьезных экспериментов. Однако далеко не все бизнес-проблемы поддаются экспериментальному анализу.
Являются ли данные репрезентативными?
Вы должны убедиться в том, что имеющиеся у вас данные отражают характеристики интересующей вас совокупности. Если вас интересуют покупательские привычки американских подростков, то ваш набор данных должен отражать покупательские привычки всех подростков, живущих в США.
Индуктивная статистика существует именно потому, что у нас редко (если вообще когда-либо) есть все данные, необходимые для решения стоящей перед нами проблемы. Мы вынуждены опираться на выборки[31]. Однако если выборка нерепрезентативна, то выводы, сделанные на ее основе, не будут отражать реальные характеристики генеральной совокупности. Чтобы убедиться в репрезентативности данных, задайте следующие вопросы:
– Имеет ли место предвзятость выборки?
– Что вы сделали с выбросами?
Имеет ли место предвзятость выборки?
Предвзятость выборки возникает тогда, когда имеющиеся у вас данные систематически отклоняются или отличаются от тех данных, которые вас интересуют. Предвзятость выборки часто обнаруживается по косвенным признакам после принятия множества решений на основе данных, плохо отражающих ту проблему, для решения которой они были собраны. Систематическая неспособность получить предсказанный данными результат заставляет аналитиков вернуться к началу и проверить корректность исходных данных.
Если вы захотите узнать рейтинг одобрения политика на основе опроса избирателей, состоящих в его политической партии, ваша выборка будет предвзятой. Хороший план эксперимента позволяет предотвратить эту проблему.
В своей работе вы можете столкнуться с изначально предвзятыми данными. Данные наблюдений особенно подвержены подобной предвзятости. Вопрос: «Зачем данные были собраны?» поможет вам понять их назначение. При сборе подобных данных редко принимаются меры для обеспечения их непредвзятости.
Вам следует рассматривать все данные наблюдений как изначально предвзятые. Вам не нужно их отбрасывать, но вы всегда должны учитывать их недостатки.
Что вы сделали с выбросами?
Представьте, что в зарплатной ведомости компании вы видите цифру 50 000 000 долларов США рядом с именем нового управляющего. Вы бы посчитали это значение выбросом? Что бы вы с ним сделали?
Выбросы – это точки данных, которые значительно отличаются от всех остальных. Обнаружение выбросов должно спровоцировать дискуссию о том, какие данные следует исключить из анализа. Если кому-то не нравится влияние экстремального значения на результат анализа, это еще не значит, что от этого значения следует избавиться. Для удаления точки данных необходимо иметь хорошее обоснование.
Произвольное присвоение точкам данных статуса выбросов может привести к тому, что ваша выборка станет предвзятой. В случае исключения выброса исходная точка данных и причина ее исключения должны быть задокументированы и доведены до сведения остальных, особенно если это исключение привело к существенному изменению результата.
Какие данные я не вижу?
Отсутствующие данные – это данные, которые либо не были зафиксированы (не имеют источника), либо вы их просто еще не видели. Рассмотрим следующие примеры:
– Данные о неполной занятости не учитываются при определении уровня безработицы.
– Компания, инвестирующая во взаимные фонды, «списывает» активы с плохой доходностью, в результате чего долгосрочная доходность оставшихся фондов в среднем оказывается выше.
– В истории «Челленджера» не было учтено 16 из 23 точек данных, связанных с полетами этого космического челнока.
Всегда стоит задумываться об информации, которая не была закодирована в рассматриваемых вами данных. Играйте в детектива[32].
Как вы поступили с отсутствующими значениями?
Отсутствующие значения – это буквально дыры в наборе данных. Они представляют собой точки данных, которые не были собраны, или исключенные выбросы (см. предыдущий раздел). Отсутствующие значения представляют проблему, но ее можно решить. Итак, всегда стоит спросить: «Как вы поступили с отсутствующими значениями?»
Предположим, вы работаете в компании, выпускающей кредитные карты, и собираете такие данные заявителей, как имя, адрес, возраст, статус занятости, доход, ежемесячные расходы на жилье и количество имеющихся банковских счетов. Ваша задача – предсказать, не просрочат ли эти заявители платеж в следующем году. Однако несколько заявителей не указывают свои доходы, из-за чего в системе сохраняется пробел – отсутствующее значение.
Вернемся к истории происхождения данных. Эта история начинается с подачи заявки на получение кредитной карты. Возможно, заявитель не указал свой доход, потому что думал, что ему откажут в выдаче кредитной карты, если его доход окажется слишком низким. Это означает, что сам факт отсутствия этого значения может говорить о возможной просрочке платежа в будущем. Такую информацию ни в коем случае не стоит отбрасывать!
Понимая это, дата-сайентист может создать новый категориальный признак под названием «Доход указан?» и ввести значение 1, если человек указал свой доход, и 0, если он этого не сделал. Таким образом, можно закодировать отсутствующие данные с помощью специальной категориальной переменной.
Позволяют ли данные измерить то, что вас интересует?

