- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Книга Бытия. Общая история происхождения - Гвидо Тонелли
Шрифт:
Интервал:
Закладка:
Очарование нарушенной симметрией можно найти во многих художественных произведениях. Регулярный ритм совершенной симметрии и успокаивает, и умиротворяет, но есть риск, что он станет скучным, перестанет вызывать эмоциональный отклик, потому что из него уйдет спонтанность, а нарушение порядка беспокоит, но при этом и возбуждает любопытство, оно подталкивает нас к выходу из зоны определенности и к попыткам выяснить, куда может завести это нарушение равновесия. Какое-то мгновение мы колеблемся в страхе: куда нас заведет эта новизна? Какие риски несет она с собой? Но художник нас успокаивает и возвращает к хорошо известной конструкции. Так же, следя за главной темой симфонии, мы боимся потерять ее в вариациях и успокаиваемся только тогда, когда узнаем ее в умиротворяющих объятьях финала. Все это знакомые приемы, использованные с величайшим мастерством знаменитыми художниками или гениальными музыкантами вроде Баха или Моцарта. В создаваемом ими напряжении секрет непревзойденного очарования великих шедевров, от наклона Пизанской башни до асимметричной и интригующей улыбки Моны Лизы, до скульптур Арнальдо Помодоро из позолоченной бронзы, наконец, – этих полированных и совершенных сфер, словно рожденных самой математической магией, которые он пронзает и разрывает, чтобы показать их страдающее нутро.
Если нарушение симметрии в художественном поле – свободный творческий акт, вызывающий удивление и восхищение, то почему бы и природе не поддаться тому же искушению?
Чтобы лучше понять, какую роль играет спонтанность в симметричных структурах физики, воспользуемся примером из механики: представим карандаш, стоящий на своем остром кончике на плоской поверхности. Его начальное положение совершенно симметрично. Карандаш может поворачиваться вокруг своей оси, и законы физики для него не изменятся, потому что гравитационное поле симметрично относительно поворотов вокруг его оси. И значит, падая на плоскую поверхность, карандаш может принять любое направление. Его симметричное состояние нестабильно, и, как только его предоставят самому себе, он упадет. Лежа на горизонтальной поверхности, он будет в стабильном состоянии, но вращательная симметрия окажется нарушенной, так как он выбрал какое-то одно из возможных направлений. Падая на поверхность, карандаш потерял энергию и симметрию, но приобрел стабильность и множественность состояний.
Что-то подобное и произошло в ранней Вселенной. Начальное горячее состояние было очень симметричным, но зато неустойчивым; остывая, Вселенная теряла симметрию, но обретала устойчивость.
Но каким было состояние с меньшей энергией, в котором Вселенная пребывала? Какой механизм мог вызвать спонтанное нарушение электрослабой симметрии?
Эта проблема стала очевидна уже с первым плачем новорожденной теории, и для нее были предложены разнообразные решения, ни одно из которых не обладает достаточной убедительностью. Правильная идея появилась только в 1964 году – ее предложили трое молодых физиков, едва перешагнувших тридцатилетний рубеж: два бельгийца Роберт Браут и Франсуа Энглер и их почти ровесник из Великобритании Питер Хиггс.
И снова какие-то юнцы проталкивают новую идею, противоречащую всем схемам, и ее никто не принимает всерьез, потому что она по-настоящему революционна.
Если два взаимодействия описываются одними и теми же уравнениями, то нарушение симметрии может затрагивать только среду, в которой они распространяются, – то есть вакуум. Другими словами, это в вакууме оказывается нарушенной симметрия. Потому что вакуум… совсем не пуст. Некое поле присутствует в каждом уголке Вселенной с незапамятных времен. Это поле Хиггса, а связанную с ним элементарную частицу следует добавить к другим фундаментальным частицам Стандартной модели. Только так можно объяснить, почему слабое взаимодействие и электромагнитное ведут себя столь непохожим образом, что трудно заподозрить их родство, даже отдаленное.
А в маленькой раскаленной первоначальной Вселенной поле Хиггса было в возбужденном состоянии – и из-за этого все вокруг было идеально симметрично. Стоило температуре уменьшиться, как оно застыло в состоянии равновесия с меньшей энергией – и от этого нарушилась изначальная симметрия. Бозоны W и Z становятся массивными оттого, что поле их изрядно запутывает, словно сеть, а фотон ускользает из нее и продолжает повсюду носиться, лишенный массы, так как его поле даже не пощекотало.
Аналогичный механизм объясняет, почему у лептонов и кварков такие разные массы. Они тоже все родились демократично лишенными массы. Это поле Хиггса их разделило, дав кому-то массу побольше, а кому-то поменьше. Чем сильнее взаимодействие с полем, тем больше масса частицы.
Все разрешилось вполне элегантно, оставалась только сущая мелочь… А точно ли существовало это поле Хиггса? Кто мог быть уверен, что именно это элегантное решение выбрала природа? Если где-то есть такое поле, из него должна выскочить ассоциированная с ним частица! Так начиналась великая экспедиция в поисках бозона Хиггса.
Открытие бозона Хиггса
Потребовалось почти пятьдесят лет, чтобы убедиться: механизм Хиггса и в самом деле ответственен за нарушение электрослабой симметрии. Столько времени длилась охота на самую неуловимую частицу в истории физики.
Теория не предсказывала, какой должна быть масса бозона Хиггса, а потому он мог прятаться где угодно. На протяжении десятилетий ученые всего мира прилагали сверхчеловеческие усилия, чтобы поймать новую частицу, но все было тщетно. Сейчас, когда мы ее уже открыли, мы знаем, что это большая удача, так как бозон Хиггса оказался слишком тяжелым и до 2010 года энергии ускорителей просто не хватало для его появления. Поворотным пунктом стал запуск Большого адронного коллайдера – ускорителя ЦЕРН под Женевой.
Ускорители частиц – это современные машины времени: они переносят нас вспять на миллиарды лет, давая возможность изучать процессы, разворачивающиеся во Вселенной близко к моменту ее рождения. При столкновениях сотрясается вакуум – и из него рождаются новые материальные частицы. Тут проявляется знаменитое эйнштейновское соотношение эквивалентности массы и энергии. При столкновении встречных пучков элементарных частиц энергия столкновения может трансформироваться в массу: E = mc2, чем больше энергия столкновения, тем более тяжелые частицы могут образоваться и позволить изучать

