- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов
Шрифт:
Интервал:
Закладка:
В противоречии со своим названием геометрическое альбедо определяет зависимость рассеяния падающего потока не от геометрии тела, а от физических свойств поверхности. Значения именно геометрического альбедо приводят в таблицах и имеют в виду, когда говорят об отражательной способности поверхностей астероидов.
Альбедо не зависит от размеров тела. Оно тесным образом связано с минералогическим составом и микроструктурой поверхностных слоев астероида и может быть использовано для классификации астероидов и определения их размеров. Для разных астероидов альбедо варьируется в пределах от 0,02 (очень темные объекты, отражающие только 2 % падающего света Солнца) до 0,5 и более (очень светлые).
Для дальнейшего важно установить связь между радиусом астероида, его альбедо и абсолютной звездной величиной. Очевидно, что чем больше радиус астероида и чем больше его альбедо, тем больший световой поток он отражает в заданном направлении при прочих равных условиях. Освещенность, которую астероид создает на Земле, зависит также от его расстояния от Солнца и Земли и потока лучистой энергии Солнца, который может быть выражен через звездную величину Солнца.
Если обозначить освещенность, создаваемую Солнцем на Земле, как E⊙, освещенность, создаваемую астероидом, — как E, расстояния от астероида до Солнца и Земли — как r и Δ, а радиус астероида (в а.е.) — как ρ, то для вычисления геометрического альбедо p можно использовать следующее выражение:
Если прологарифмировать это соотношение и заменить логарифм отношения E/E⊙ по формуле Погсона (3.3), то найдем
lg p = 0,4(m⊙ — m) + 2(lg r + lg Δ — lg ρ),
где m⊙ — видимая звездная величина Солнца. Заменим теперь m по формуле (3.4), тогда
lg p = 0,4(m⊙ — m0) — 2 lg ρ,
или, выражая диаметр D в километрах и полагая видимую звездную величину Солнца в лучах V равной –26,77 [Герелс, 1974], получим
lg D = 3,122 — 0,5 lg p — 0,2H, (3.7)
где H — абсолютная звездная величина астероида в лучах V.
3.8. Диаметры астероидов
Абсолютная звездная величина H — важная характеристика астероида, которая позволяет оценить его линейные размеры, если найдено или из каких-либо соображений принято значение альбедо. Формула (3.7) связывает диаметр астероида, выраженный в километрах, его абсолютную звездную величину и геометрическое альбедо p. Данная формула позволяет достаточно надежно оценивать диаметры астероидов, имеющих значительные по величине альбедо (более 0,05). При меньших альбедо относительная ошибка может быть весьма большой.
Поскольку альбедо зависит от длины волны света, то в формуле (3.7) предполагается использование альбедо в тех же лучах V, в которых оценивалась звездная величина Солнца и величина H (обозначается как pV).
Для АСЗ усредненное значение альбедо равно 0,14 [Stuart and Binzel, 2004]. Если при данном значении альбедо подставить в формулу (3.7) значение H = 17,75m, то найдем, что данному значению звездной величины отвечает значение диаметра, равное 1 км.
Для оценки фотометрического значения диаметра астероида по его абсолютной звездной величине можно воспользоваться таблицей, опубликованной на сайте Центра малых планет (табл. 3.5). Таблица дает величины диаметров для значений альбедо 0,5, 0,25 и 0,05. Для значений H из левой колонки диаметры приводятся в километрах, для значений H из правой колонки — в метрах (как показывает формула (3.7), значения H, различающиеся на 15 звездных величин, при одном и том же значении альбедо дают значения диаметров, различающиеся ровно в тысячу раз).
Таблица 3.5. Диаметры астероидов в зависимости от их абсолютной звездной величины и принятого значения альбедоПримечание. Для определения диаметра при данной звездной величине нужно найти звездную величину в левой или правой колонке. В центральных трех колонках будет указан диаметр объекта в километрах, если звездная величина из левой колонки, и в метрах, если из правой.
Если принять для астероидов, как это часто делается, среднее значение альбедо равным 0,13, то минимальные и максимальные значения альбедо для отдельных астероидов могут отличаться от него примерно в пять раз. Формула (3.7) показывает, что предельные значения диаметров при этом могут отличаться от номинального значения, соответствующего среднему значению альбедо, примерно в 2,25 раза.
Формулы типа (3.7) позволяют найти фотометрические, или, иначе говоря, принятые значения диаметров, если известно альбедо, либо определить альбедо, если известен диаметр. Но величина альбедо астероидов почти столь же трудно определяемая величина, как и диаметр.
В конце XIX в. измерения угловых значений диаметров первых четырех астероидов были проведены американским астрономом Э. Барнардом с помощью нитяного микрометра на 90– и 100-см рефракторах Ликской и Йеркской обсерваторий. Эти измерения позволили впервые определить величины диаметров и соответствующие им значения альбедо четырех астероидов (табл. 3.6) [Герелс, 1974].
Таблица 3.6. Измеренные диаметры крупных астероидов и полученные значения альбедоОднако метод непосредственного измерения диаметров не может быть распространен на другие астероиды в силу малости их диаметров и больших относительных ошибок измерений. В течение длительного времени результаты Барнарда оставались едва ли не единственным источником представлений об альбедо астероидов. Лишь в семидесятые годы XX в. появились новые, перспективные методы определения их диаметров и альбедо — поляриметрический и радиометрический методы.
Поляриметрический метод основан на тесной корреляции, которая, как показал Вайдорн [Widorn, 1967], существует между степенью поляризации света, отражаемого некоторой поверхностью при разных углах фазы, и ее альбедо. Существование корреляции было установлено на основе изучения поляризационных кривых для многочисленных лабораторных образцов. Типичные поляризационные кривые имеют вид, представленный на рис. 3.16.
Рис. 3.16. Поляризационные кривые для ряда астероидов [Dollfus and Zellner, 1979]. Знак +/— соответствует знаку поляризации
На этом рисунке вдоль горизонтальной оси отложены углы фазы, а по вертикальной оси — степень поляризации отраженного света, выраженная в процентах. Степень поляризации P, которая при нулевом угле фазы равна нулю, сначала уменьшается с ростом фазового угла, затем достигает минимального значения и в дальнейшем растет до положительных значений. Как оказалось, ряд характеристик поляризационной кривой, в особенности угол h наклона кривой к горизонтали при смене знака поляризации, весьма чувствителен к величине альбедо и слабо зависит от других характеристик поверхности. Исследования лабораторных образцов позволили калибровать зависимость альбедо от величины угла h. В дальнейшем получение кривых поляризации для нескольких десятков астероидов позволило найти их альбедо и диаметры.
Радиометрический метод определения диаметров и альбедо астероидов основан на сравнении блеска астероидов в видимой области спектра и их теплового излучения в инфракрасной области. Как показывает формула (3.7), для каждого значения абсолютной звездной величины можно найти множество пар значений альбедо и соответствующих значений диаметров, удовлетворяющих этой формуле. Астероид с заданной абсолютной звездной величиной может иметь большое альбедо и малые размеры. Но такой же блеск может быть обеспечен телом с небольшим альбедо, но больших размеров. Разница между ними заключается в том, что тело с большим альбедо отражает большую часть света по сравнению со вторым и, следовательно, его температура будет ниже. Его излучение в инфракрасной области спектра будет меньше. Если выполнено измерение потока тепла от астероида, то возможно найти такие значения альбедо и диаметра, которые, с одной стороны, удовлетворяют формуле (3.7), а с другой, обеспечивают наблюдаемый поток. Метод одновременного определения диаметров и альбедо астероидов, основанный на подобных соображениях, был развит в работах Д. Аллена [Allen, 1971] и Д. Матсона [Matson, 1971]. В дальнейшем он был усовершенствован и широко применялся на практике. С использованием этого метода были определены диаметры и альбедо свыше двухсот астероидов.
Диаметры нескольких десятков астероидов были оценены с высокой точностью на основе наблюдений покрытий звезд этими астероидами [Millis and Dunham, 1989].
В январе 1983 г. на орбиту вокруг Земли был выведен спутник IRAS (In-frared Astronomical Satellite). Основной целью его запуска был обзор неба в четырех полосах инфракрасной области спектра в окрестности длин волн 12, 25, 60 и 100 микрометров. Результаты наблюдений IRAS, касающиеся астероидов, явились наиболее полным набором данных о диаметрах и альбедо этих тел [Matson et al., 1989; Veeder and Tedesco, 1992], хотя они не свободны от систематических ошибок [Лупишко, 1998]. Более поздняя версия обработки данных IRAS содержится в работе [Tedesco et al., 2002].

