Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Читать онлайн Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 95
Перейти на страницу:

Он любил детей и, говорят, мог заниматься серьезными вычислениями в то время, как дети играли у его ног. (На меня как писателя, работающего дома в окружении двух маленьких детей, это производит действительно немалое впечатление.) По-видимому, он был не способен к интригам, никогда не терял друзей иначе как по причине смерти и был честен во всех своих начинаниях — хотя, если верить Стрэчи, готов был слегка поступиться принципами ради спокойной жизни![33] Он написал один из первых научно-популярных бестселлеров «Письма к немецкой принцессе», где объяснял обычным читателям, почему небо голубое, почему луна кажется больше, когда она восходит, а также рассматривал другие подобные вопросы, занимающие умы.[34]

В основе всего этого лежала твердая как гранит религиозная вера. Эйлер рос кальвинистом и всегда был привержен этой вере. Его отец, как и отец Римана, был пастором в деревенской церкви, и Эйлеру, как и Риману, изначально предназначалась церковная карьера. Сообщают, что во время жизни в Берлине «он каждый вечер собирал всю семью целиком и читал главу из Библии, сопровождая чтение проповедью». И это происходило ровно тогда, когда при дворе, согласно Маколею, «главнейшие темы разговоров вертелись вокруг нелепости религиозных убеждений любого толка». Трудолюбивый, благочестивый, стоический, преданный своей семье, живущий в простоте и просто изъясняющийся — неудивительно, что Фридрих его недолюбливал. Но настало время перейти от дней к трудам и взглянуть на первый великий триумф Эйлера — базельскую задачу.

Глава 5. Дзета-функция Римана

I. Базельская задача

Выразить в замкнутом виде бесконечный ряд

Базельская задача[35] названа в честь швейцарского города, в университете которого профессорами математики один за другим были двое братьев Бернулли — Якоб (с 1687 по 1705 год) и Иоганн (с 1705 по 1748 год). Мы упоминали в главе 1.iii, что оба брата Бернулли нашли доказательства расходимости гармонического ряда. В книге, где он опубликовал сначала доказательство брата, а потом и свое, Якоб Бернулли сформулировал приведенную выше задачу и обратился ко всем, кто знает, как с ней разобраться, с просьбой сообщить ему ответ. (Я очень скоро объясню, что значит «выразить в замкнутом виде».)

Заметим, что ряд, фигурирующий в этой задаче, — будем называть его «базельским рядом» — не слишком далек от гармонического ряда. Каждый член в нем, собственно говоря, равен квадрату соответствующего члена в гармоническом ряде. А возведение в квадрат числа, меньшего единицы, дает число еще меньшее: квадрат одной второй уменьшает ее до одной четвертой. И чем меньшее число возводится в квадрат, тем сильнее выражен этот эффект: одна четвертая лишь немного меньше одной второй, но квадрат одной десятой дает одну сотую, которая намного меньше, чем одна десятая.

Каждый член в базельском ряду, таким образом, меньше соответствующего члена в гармоническом ряду, и по мере продвижения вперед они делаются все меньше и меньше. Поскольку гармонический ряд лишь «едва-едва» расходится, вполне реальны надежды на то, что базельский ряд, составленный из меньших и даже много меньших величин, сойдется. Вычисление подсказывает, что на самом деле так и есть. Сумма первых десяти членов равна 1,5497677…, сумма ста членов составляет 1,6349839…, тысячи — 1,6439345…, а десяти тысяч — 1,6448340…. Действительно, впечатление такое, что ряд сходится к какому-то числу в окрестности 1,644 или 1,645. Но к какому?

В подобных ситуациях математиков не устраивает просто найти приближение, особенно когда рассматриваемый ряд сходится медленно, как в данном случае. (Сумма 10 000 членов все еще на 0,006 процента отличается от значения полной, бесконечной суммы, которая равна 1,6449340668….) Выражается ли ответ дробным числом, скажем, 9108/5537 или 560 837 199/340 948 133? Или он имеет более сложный вид, может быть, в него входят корни, например, √46/17, или же корень пятой степени из 11 983/995, или же корень восемнадцатой степени из 7776[36]? Чему равен ответ? Неспециалист решил бы, что вполне достаточно знать это число с точностью до нескольких знаков после запятой. Но нет, математики желают знать его точно, если только это возможно. Не просто потому, что они одержимы навязчивой идеей, но и потому, что по опыту знают: получение точного ответа нередко открывает ранее запертые двери и проливает свет на более глубокие математические вопросы. Математический профессиональный термин для такого точного представления — это «замкнутый вид». А десятичное приближение, неважно, насколько точное, — «незамкнутый вид». Число 1,6449340668… — это незамкнутый вид. Сами видите, что многоточие сообщает нам, что правая часть не завершена и при желании можно проделать вычисление, чтобы добавить туда еще цифры.

Базельская задача была поставлена так: найти замкнутый вид ряда из обратных квадратов. Задача была в конце концов побеждена в 1735 году, через 46 лет после своей постановки, и сделал это молодой Леонард Эйлер, трудившийся в далеком Санкт-Петербурге. Потрясающий ответ имеет вид π2/6. Да, это «то самое» π, магическое число, равное 3,14159265…, — отношение длины окружности к ее диаметру. Что же оно делает в задаче, которая не имеет ни малейшего отношения не только к окружностям, но и вообще к геометрии?! Современных математиков это не так уж изумляет, они привыкли, что π можно встретить в математике где угодно, но в 1735 году этот ответ произвел сильное впечатление.

Базельская задача подводит нас к дзета-функции — объекту, с которым мы имеем дело в Гипотезе Римана. Но прежде чем мы сможем познакомиться с дзета-функцией, надо вспомнить кое-что из математических основ: степени, корни и логарифмы.

II.

Степени — это прежде всего повторяющееся умножение. Число 123 — это 12×12×12, где перемножаются три сомножителя, а 125 — это 12×12×12×12×12, где сомножителей пять. Что получится, если умножить 123 на 125? Это будет (12×12×12)×(12×12×12×12×12), что, конечно, составляет 128. Надо просто сложить степени: 3 + 5 = 8. В этом и состоит первое великое правило действий со степенями.

1-е правило действий со степенями:

xm×xn = xm + n.

(Давайте я здесь прямо и скажу, что во всем этом разделе мы будем иметь дело только с положительными значениями буквы x. Возводить в степень нуль — пустая трата времени, а возведение в степень отрицательных чисел приводит к занятным проблемам, о которых мы поговорим позднее.)

Что будет, если разделить 125 на 123? То есть вычислить (12×12×12×12×12)/(12×12×12). Можно сократить три множителя 12 сверху и снизу, и в результате останется 12×12, т.е. 122. Как видно, это все равно что вычесть степени.

2-е правило действий со степенями:

xm: xn = xm − n.

А теперь возведем 125 в куб: (12×12×12×12×12)×(12×12×12×12×12)×(12×12×12×12×12) дает 1215. На этот раз степени перемножаются.

3-е правило действий со степенями:

(xn)m = xmn.

Таковы три самых важных правила, которые говорят нам, как обращаться со степенями. В дальнейшем мы будем ссылаться на них как на «правила действий со степенями» без дополнительных объяснений. Однако это пока не все правила. Нам потребуется еще несколько, потому что до сих пор у нас были степени, выражаемые положительными целыми числами. А как обстоит дело с отрицательными и дробными степенями? А со степенью нуль?

1 ... 14 15 16 17 18 19 20 21 22 ... 95
Перейти на страницу:
На этой странице вы можете бесплатно скачать Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергей
Сергей 24.01.2024 - 17:40
Интересно было, если вчитаться